
Five data models for sharding
Craig Kerstiens, Head of Cloud at Citus

Who am I?

Craig Kerstiens
http://www.craigkerstiens.com

@craigkerstiens

Postgres weekly
Run Citus Cloud

Previously Heroku,
Accenture, Truviso

http://www.craigkerstiens.com

What is sharding
Practice of separating a large database into smaller, faster, more easily
managed parts called data shards.

Source: the internet

2 Nodes - 32 shards

4 nodes - still 32 shards

Five models
• Geography

• Multi-tenant

• Entity id

• Graph model

• Time series

But first, two approaches

RangeHash

Hash - The steps
1. Hash your id

2. Define a shard range x shards, and each contain some range of hash
values. Route all inserts/updates/deletes to the shard

3. Profit

More details
• Hash based on some id

• Postgres internal hash can work fine, or so can your own

• Define your number of shards up front, make this larger than you expect
to grow to in terms of nodes

• (2 is bad)

• (2 million is also bad)

• Factors of 2 are nice, but not actually required

Don’t just route values
• 1-10 -> shard 1

• 2-20 -> shard 2

Create range of hash values
• hash 1 = 46154

• hash 2 = 27193

• Shard 13 = ranges 26624 to 28672

Range - The steps
1. Ensure you’ve created your new destination for your range

2. Route your range to the right bucket

3. Profit

Let’s build Google Analytics

Google analytics
• Accounts

• Page view

- Visitor id

- Time

- Page

- Referrer

- etc.

Hash based deeper dive
• Define your shards up front

• Remember: multiple shards within a single instance/VM

Setting things up
• Visits table

• Hash based we’re going to create visits 1-32

• CREATE TABLE visits_01 … (on node 1)

• CREATE TABLE visits_02 … (on node 2)

• CREATE TABLE visits_03 … (on node 1)

• CREATE TABLE visits_04 … (on node 2)

How’s our data look?

Account page occurred_at visitor_id

1 https://www.craigkerstiens.com 6/5/2018 12:34:00 ab49e5-bc34-46d12

2 http://www.facebook.com 6/5/2018 13:10:00 ce52062-bc38-43d52

https://www.craigkerstiens.com
http://www.facebook.com

How’s our data look?

Hashed
Account page occurred_at visitor_id

46154 https://www.craigkerstiens.com 6/5/2018 12:34:00 ab49e5-bc34-46d12

27193 http://www.facebook.com 6/5/2018 13:10:00 ce52062-bc38-43d52

https://www.craigkerstiens.com
http://www.facebook.com

Mapping the data

Hash ranges Table data

0-2047 visits_01

2048-4095 visits_02

… …

26624 to 28672 visits_13

…

63488-65536 visits_32

How’s our data look?

Hashed
Account page occurred_at visitor_id Table

46154 https://
www.craigkerstiens.com 6/5/2018 12:34:00 ab49e5-

bc34-46d12 visits_27

27193 http://www.facebook.com 6/5/2018 13:10:00 ce52062-
bc38-43d52 visits_13

https://www.craigkerstiens.com
http://www.facebook.com

How do we even query this thing?
SELECT *
FROM visits
WHERE account_id = 1

SELECT get_hash_value(1);
46154

SELECT tablename
FROM hash_buckets
WHERE 46154 > lower_range
 AND 46154 <= upper_range;
visits_13

SELECT *
FROM visits_13
WHERE account_id = 1

How do we even query this thing?

Let’s build Google Analytics
(Again)

Range based
• Route based on rule based logic

• Create a new buckets

How’s our data look?

Visit ID page occurred_at visitor_id

1 https://www.craigkerstiens.com 6/5/2018 12:34:00 ab49e5-bc34-46d12

2 http://www.facebook.com 6/5/2018 13:10:00 ce52062-bc38-43d52

https://www.craigkerstiens.com
http://www.facebook.com

Create new buckets as needed
• Thanks Postgres 10

• Can be minutely, hourly, daily, you choose

• CREATE TABLE visits_06_04_2018 …

• CREATE TABLE visits_06_05_2018 …

•

How do we even query this thing?
SELECT *
FROM visits
WHERE user_id = 1

How do we even query this thing?
SELECT *
FROM visits
WHERE user_id = 1
 AND occurred_at = ’06-05-2018’

How do we even query this thing?
SELECT *
FROM visits_06_05_2018
WHERE user_id = 1
 AND occurred_at = ’06-05-2018’

Sharding when do you need it?

You’re having trouble scaling

You’re having trouble scaling

Sharding to the rescue

Single biggest factor is your data model

Five models
• Geography

• Multi-tenant

• Entity id

• Graph model

• Time series

Click to edit master tile stylegeography

Shard by Geography
• Is there a clear line I can draw for a geographical boundary

• Good examples: income by state, healthcare, etc.

• Bad examples:

• Text messages: 256 sends to 510, both want a copy of this data…

Will geography sharding work for you?
• Do you join across geographies?

• Does data easily cross boundaries?

• Is data queries across boundaries or a different access frequently?

More specifics
• Granular vs. broad

• State vs. zip code

• (California and texas are bad)

• Zip codes might work, but does that work for your app?

Common use cases
• If your go to market is geography focused

• Instacart/Shipt

• Uber/Lyft

Real world application
• Range sharding makes moving things around harder here

• Combining the geography and giving each and id, then hashing (but using
smaller set of shards) can give better balance to your data

multi-tenant

Sharding by tenant
• Is each customer’s data their own?

• What’s your data’s distribution?

• (If one tenant/customer is 50% of your data tenant sharding won’t help)

• If it’s 10% of your data you may be okay

Common use cases
• Saas/B2B

• Salesforce

• Marketing automation

• Any online SaaS

Guidelines for multi-tenant sharding
• Put your tenant_id on every table that’s relevant

• Yes, denormalize

• Ensure primary keys and foreign keys are composite ones (with
tenant_id)

• Enforce your tenant_id is on all queries so things are appropriately
scoped

Salesforce schema
CREATE TABLE leads (
 id serial primary key,
 first_name text,
 last_name text,
 email text
);
CREATE TABLE accounts (
 id serial primary key,
 name text,
 state varchar(2),
 size int
);
CREATE TABLE opportunity (
 id serial primary key,
 name text,
 amount int
);

Salesforce schema - with orgs
CREATE TABLE leads (
 id serial primary key,
 first_name text,
 last_name text,
 email text,
 org_id int
);
CREATE TABLE accounts (
 id serial primary key,
 name text,
 state varchar(2),
 size int
 org_id int
);
CREATE TABLE opportunity (
 id serial primary key,
 name text,
 amount int
 org_id int
);

Salesforce schema - with orgs
CREATE TABLE leads (
 id serial primary key,
 first_name text,
 last_name text,
 email text,
 org_id int
);
CREATE TABLE accounts (
 id serial primary key,
 name text,
 state varchar(2),
 size int
 org_id int
);
CREATE TABLE opportunity (
 id serial primary key,
 name text,
 amount int
 org_id int
);

Salesforce schema - with keys
CREATE TABLE leads (
 id serial,
 first_name text,
 last_name text,
 email text,
 org_id int,
 primary key (org_id, id)
);
CREATE TABLE accounts (
 id serial,
 name text,
 state varchar(2),
 size int,
 org_id int,
 primary key (org_id, id)
);
CREATE TABLE opportunity (
 id serial,
 name text,
 amount int,

Salesforce schema - with keys
CREATE TABLE leads (
 id serial,
 first_name text,
 last_name text,
 email text,
 org_id int,
 primary key (org_id, id)
);
CREATE TABLE accounts (
 id serial,
 name text,
 state varchar(2),
 size int,
 org_id int,
 primary key (org_id, id)
);
CREATE TABLE opportunity (
 id serial,
 name text,
 amount int,

Warnings about multi-tenant implementations

• Danger ahead if using schemas on older PG versions

• Have to reinvent the wheel for even the basics

• Schema migrations

• Connection limits

• Think twice before using a schema or database per tenant

Click to edit master tile styleentity_id

Entity id
• What’s an entity id?

• Something granular

• Want to join where you can though

• Optimizing for parallelism and less for data in memory

Examples tell it best
• Web analytics

• Shard by visitor_id

• Shard both sessions and views

• Key is to co-locate things you’ll join on

Key considerations
• SQL will be more limited OR slow

• Think in terms of map reduce

Map reduce examples
• Count (*)

• SUM of 32 smaller count (*)

• Average

• SUM of 32 smaller SUM(foo) / SUM of 32 smaller count(*)

• Median

• uh….

But I like medians and more
• Count distinct

• HyperLogLog

• Ordered list approximation

• Top-n

• Median

• T-digest or HDR

Graph modelgraph model

When you use a graph database
• You’ll know, really you will

Very different approach

Craig
posted
photo

Daniel
liked

Will
posted

comment

But what about sharding?
• Within a graph model you’re going to duplicate your data

• Shard based on both:

• The objects themselves

• The objects subscribed to other objects

Read this

https://www.usenix.org/system/files/conference/atc13/atc13-bronson.pdf

time series

Time series: It’s obvious right?
• Well it depends

Querying long ranges
Not removing data

Always querying time
Querying a subset
Remove old data

Good Okay/Bad

Time series
• Range partitioning

• 2016 in a bucket, 2017 in a bucket

• 2016-01-01 in a bucket, 2016-01-02 in a bucket…

• Key steps

• Determine your ranges

• Make sure you setup enough in advance, or automate creating new ones

• Delete

Sensor data
CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
);

Sensor data - initial partition
CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

Sensor data - initial partition
CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

Sensor data - setting up partitions
CREATE TABLE measurement_y2017m10 PARTITION OF measurement
 FOR VALUES FROM ('2017-10-01') TO ('2017-10-31');

CREATE TABLE measurement_y2017m11 PARTITION OF measurement
 FOR VALUES FROM ('2017-11-01') TO ('2017-11-30');

Sensor data - indexing
CREATE TABLE measurement_y2017m10 PARTITION OF measurement
 FOR VALUES FROM ('2017-10-01') TO ('2017-10-31');

CREATE TABLE measurement_y2017m11 PARTITION OF measurement
 FOR VALUES FROM ('2017-11-01') TO ('2017-11-30');

CREATE INDEX ON measurement_y2017m10 (logdate);
CREATE INDEX ON measurement_y2017m11 (logdate);

Sensor data - inserting
CREATE TRIGGER insert_measurement_trigger
 BEFORE INSERT ON measurement
 FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();

Sensor data - inserting
CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
 IF (NEW.logdate >= DATE '2017-02-01' AND
 NEW.logdate < DATE '2017-03-01') THEN
 INSERT INTO measurement_y2017m02 VALUES (NEW.*);
 ELSIF (NEW.logdate >= DATE '2017-03-01' AND
 NEW.logdate < DATE '2017-04-01') THEN
 INSERT INTO measurement_y2017m03 VALUES (NEW.*);
 ...
 ELSIF (NEW.logdate >= DATE '2018-01-01' AND
 NEW.logdate < DATE '2018-02-01') THEN
 INSERT INTO measurement_y2018m01 VALUES (NEW.*);
 ELSE
 RAISE EXCEPTION 'Date out of range. Fix the measurement_insert_trigger() function!';
 END IF;
 RETURN NULL;
END;
$$
LANGUAGE plpgsql;

Time series tips
• Postgres 10 covers this pretty natively

• Lots of rough edges

• Make sure to leverage pg_partman

Five models
• Geography

• Multi-tenant

• Entity id

• Graph model

• Time series

Recap
• Not sharding is always easier than sharding

• Identify your sharding approach/key early, denormalize it even when
you’re small

• Don’t force it into one model. No model is perfect, but disqualify where
you can

• Sharding used to be much more painful, it’s not quite a party yet, but it’s
now become predictable based on learnings of others

@citusdatawww.citusdata.com

Thanks

Craig Kerstiens
@craigkerstiens

http://www.citusdata

