
Copyright©2018 NTT Corp. All Rights Reserved.

Partitioning Shines in PostgreSQL 11

Amit Langote, NTT OSS Center

PGConf.ASIA, Tokyo

Dec 11, 2018

1/47 Copyright©2018 NTT Corp. All Rights Reserved.

About me

• Amit Langote

• Work at NTT OSS Center developing PostgreSQL

• Contributed mainly to table partitioning

• Gave a presentation on related topic at the last year’s PGConf.ASIA

2/47 Copyright©2018 NTT Corp. All Rights Reserved.

Agenda

• What is partitioning?

• What is declarative partitioning?

• Limitations of partitioning in PostgreSQL 10

• New partitioning features in PostgreSQL 11

• Explanation of new partitioning features

• Performance problems

• Ongoing work for PostgreSQL 12 for performance

• Future work on performance

3/47 Copyright©2018 NTT Corp. All Rights Reserved.

What is partitioning?

• Dividing a large table into smaller ones for manageability and performance

• Manageability: quick archival and maintenance of smaller chunks of independent data

4/47 Copyright©2018 NTT Corp. All Rights Reserved.

What is partitioning?

• Performance: quick query execution by pruning unnecessary partitions and parallel

processing

https://user-images.githubusercontent.com/2574567/49066579-ee17f900-f264-11e8-9c12-66793f5bce8b.png
https://user-images.githubusercontent.com/2574567/49066581-eeb08f80-f264-11e8-9040-104cbc708722.png

5/47 Copyright©2018 NTT Corp. All Rights Reserved.

• Scalability: partitioning related optimizations ensure that performance doesn’t degrade as the

data size increases

What is partitioning?

6/47 Copyright©2018 NTT Corp. All Rights Reserved.

What is declarative partitioning?

• A feature added in PostgreSQL 10 to make partitioning easier and faster

• Up to PostgreSQL 9.6

 Use table inheritance to link parent table to its partitions

 Add CHECK constraint to child tables as partition constraint (constraint exclusion can prune

unnecessary partitions based on it)

 Create BEFORE INSERT FOR EACH ROW trigger on the parent table to redirect inserted data

to correct partition (known as tuple routing)

• In PostgreSQL 10

 Create parent tables with PARTITION BY clause to specify how to divide the incoming data

based on the values of partition key columns

 Create partitions with PARTITION OF ... FOR VALUES clause to specify the set of partition

key values that partition allows

 Partition constraints and tuple routing handled internally

 Many limitations!

7/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 10 limitations

• No hash partitioning

• No default partition to "catch" unattended data

• No indexes and row-level triggers on parent tables

 Can be created on individual partitions manually

• No foreign key constraint on parent tables

 Can be created on individual partitions manually

• No UPDATE tuple routing

• No INSERT ON CONFLICT on parent tables

• Partition pruning still based on constraint exclusion

8/47 Copyright©2018 NTT Corp. All Rights Reserved.

New partitioning features in PostgreSQL 11

• Hash partitioning

• Default partition to "catch" unattended data

• Create indexes on parent tables

 To specify UNIQUE, include partition key columns in the index key

• AFTER ... FOR EACH ROW triggers on parent tables

 BEFORE ... FOR EACH ROW not supported!

• Create foreign key on parent tables

 Foreign keys referencing parent tables not supported!

• UPDATE tuple routing

• INSERT ON CONFLICT on parent tables

 Handling some cases requires UNIQUE index to be present

9/47 Copyright©2018 NTT Corp. All Rights Reserved.

New partitioning features in PostgreSQL 11

• New partitioning-based optimization features

 Improved partition pruning (no longer uses constraint exclusion)

 Run-time partition pruning

 Partitionwise join and aggregation

10/47 Copyright©2018 NTT Corp. All Rights Reserved.

Hash partitioning

• Sometimes it's not clear which values to assign to individual partitions

 Something you need to decide when using list and range partitioning

• Hash partitioning is useful in that case

• Just decide how many partitions to create

• Example with 4 hash partitions:

create table measurement (sensor_id text, data json) partition by hash (sensor_id);

create table measurement0 partition of measurement for values with (modulus 4, remainder 0);

create table measurement1 partition of measurement for values with (modulus 4, remainder 1);

create table measurement2 partition of measurement for values with (modulus 4, remainder 2);

create table measurement3 partition of measurement for values with (modulus 4, remainder 3);

11/47 Copyright©2018 NTT Corp. All Rights Reserved.

Hash partitioning

• Server will assign the partition by computing the remainder as hashfunc(sensor_id) % 4,

where hashfunc is a hashing function for text data type

• Hashing as described above ensures uniform distribution of rows among partitions

• Documentation contains tips on how to increase the number of hash partitions without needing

to redistribute the data contained in existing partitions

https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION

https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION

12/47 Copyright©2018 NTT Corp. All Rights Reserved.

Default partition

• In some cases, you may not know in advance all the values for which to create partitions

 No, PostgreSQL won't create a partition automatically if a new value shows up

 Instead you get an error that a partition for given value doesn't exist

• Default partition helps with that

 It doesn't have a specific set of values assigned to it

 Any value for which there is no partition defined will go into the default partition

• There can be only 1 default partition

• Hash partitioned tables cannot have default partition

• Syntax:

create table default_partition partition of parent_table default;

13/47 Copyright©2018 NTT Corp. All Rights Reserved.

Indexes

• NOT some new type of index that covers all partitions in one storage-level object

• Since parent table doesn't store data by itself, any indexes created on it should be cascaded to its

partitions which store data

 PostgreSQL 10 doesn't implement that cascading

• PostgreSQL 11 does!

• Any indexes defined on the parent are duplicated in all partitions

 Both existing partitions and those created or attached after-the-fact will have the index

• Parent indexes can be used for UNIQUE constraint too

 Must include partition key columns in the index key

• Example of a UNIQUE index:

14/47 Copyright©2018 NTT Corp. All Rights Reserved.

Indexes

create table accounts (id text, name text) partition by hash (id);

create table accounts0 partition of accounts for values with (modulus 4, remainder 0);

create table accounts1 partition of accounts for values with (modulus 4, remainder 1);

create table accounts2 partition of accounts for values with (modulus 4, remainder 2);

create table accounts3 partition of accounts for values with (modulus 4, remainder 3);

-- ok

create unique index on accounts (id);

-- can’t create unique index if its key doesn’t contain partition key

create unique index on accounts (name);

ERROR: insufficient columns in UNIQUE constraint definition

DETAIL: UNIQUE constraint on table "accounts" lacks column "id" which is part of the

partition key.

-- ok if it’s non-unique though

create index on accounts (name);

15/47 Copyright©2018 NTT Corp. All Rights Reserved.

Indexes

-- can also specify the UNIQUE or PRIMARY KEY constraint inline

drop table accounts;

create table accounts (id text primary key, name text) partition by hash (id);

create table accounts0 partition of accounts for values with (modulus 4, remainder 0);

create table accounts1 partition of accounts for values with (modulus 4, remainder 1);

create table accounts2 partition of accounts for values with (modulus 4, remainder 2);

create table accounts3 partition of accounts for values with (modulus 4, remainder 3);

16/47 Copyright©2018 NTT Corp. All Rights Reserved.

Indexes

-- see that the index is present in partitions

\d accounts0

 Table "public.accounts0"

 Column │ Type │ Collation │ Nullable │ Default

───────────┼─────────┼───────────┼──────────┼─────────

 id │ text │ │ not null │

 branch_id │ integer │ │ │

Partition of: accounts FOR VALUES WITH (modulus 4, remainder 0)

Indexes:

 "accounts0_pkey" PRIMARY KEY, btree (id)

17/47 Copyright©2018 NTT Corp. All Rights Reserved.

Triggers

• Again, not some new kind of trigger specialized for partitioned tables

• Parent tables can already have statement-level triggers, but any row-level triggers must be

defined on partitions due to certain implementation details

 PostgreSQL 10 doesn't implement cascading of trigger definition to partitions

• PostgreSQL 11 does!

• Only AFTER ... FOR EACH ROW triggers are cascaded

 Cascading BEFORE ... FOR EACH ROW triggers may be pursued in the future after taking

care of some corner cases

18/47 Copyright©2018 NTT Corp. All Rights Reserved.

Foreign keys

• With PostgreSQL 10, you can add foreign keys to individual partitions (in both directions), but not

to parent table

• PostgreSQL 11 lets you add it to parent table and cascades the definition to partitions

 But only the outgoing foreign keys

• Examples:

create table accounts (id text primary key, branch_id int) partition by hash (id);

create table accounts0 partition of accounts for values with (modulus 4, remainder 0);

create table accounts1 partition of accounts for values with (modulus 4, remainder 1);

create table accounts2 partition of accounts for values with (modulus 4, remainder 2);

create table accounts3 partition of accounts for values with (modulus 4, remainder 3);

create table branches (id int primary key, name text);

alter table accounts add foreign key (branch_id) references branches (id);

19/47 Copyright©2018 NTT Corp. All Rights Reserved.

Foreign keys

-- or specify the foreign key inline

drop table accounts;

create table accounts (id text primary key, branch_id int references branches) partition

by hash (id);

create table accounts0 partition of accounts for values with (modulus 4, remainder 0);

create table accounts1 partition of accounts for values with (modulus 4, remainder 1);

create table accounts2 partition of accounts for values with (modulus 4, remainder 2);

create table accounts3 partition of accounts for values with (modulus 4, remainder 3);

20/47 Copyright©2018 NTT Corp. All Rights Reserved.

Foreign keys

\d accounts0

 Table "public.accounts0"

 Column │ Type │ Collation │ Nullable │ Default

───────────┼─────────┼───────────┼──────────┼─────────

 id │ text │ │ not null │

 branch_id │ integer │ │ │

Partition of: accounts FOR VALUES WITH (modulus 4, remainder 0)

Indexes:

 "accounts0_pkey" PRIMARY KEY, btree (id)

Foreign-key constraints:

 "accounts_branch_id_fkey" FOREIGN KEY (branch_id) REFERENCES branches(id)

-- this doesn't work yet

create table history (aid text references accounts, delta int);

ERROR: cannot reference partitioned table "accounts"

21/47 Copyright©2018 NTT Corp. All Rights Reserved.

UPDATE tuple routing

• One may occasionally be forced to update the partition key of a row such that the new row needs

to be moved to another partition

 PostgreSQL 10 would throw its hands up and show an error message

• PostgreSQL 11 handles the case gracefully by re-routing the new row

• Consider the following somewhat artificial example:

create table sensor_readings (name text, reading int) partition by list (left(name, 2));

create table "sensor_readings_AB" partition of sensor_readings for values in ('AB');

create table "sensor_readings_CD" partition of sensor_readings for values in ('CD');

insert into sensor_readings values ('AB0001', 0), ('CD0001', 0);

-- realize sensor name's really 'BA0001', not 'AB0001', so create a partition like that

create table "sensor_readings_BA" partition of sensor_readings for values in ('BA');

22/47 Copyright©2018 NTT Corp. All Rights Reserved.

UPDATE tuple routing

-- try to update all 'AB0001' entries to reflect that; bad luck in PostgreSQL 10

update sensor_readings set name = 'BA0001' where name = 'AB0001';

ERROR: new row for relation "sensor_readings_AB" violates partition constraint

DETAIL: Failing row contains (BA0001, 0).

-- PostgreSQL 11 to the rescue

update sensor_readings set name = 'BA0001' where name = 'AB0001';

select tableoid::regclass, * from sensor_readings;

 tableoid │ name │ reading

──────────────────────┼────────┼─────────

 "sensor_readings_BA" │ BA0001 │ 0

 "sensor_readings_CD" │ CD0001 │ 0

(2 rows)

23/47 Copyright©2018 NTT Corp. All Rights Reserved.

INSERT ON CONFLICT or upsert

• It's annoying when useful features like upsert don't work whereas you would expect them to,

 Due to PostgreSQL 10's lack of support of indexes on parent tables, it would outright reject

upsert command, because an index is needed

 Indexes defined on individual partitions don't help, because planner doesn't consider them

(INSERT mentions parent table)

• PostgreSQL 11 supports adding indexes on parent tables, which can optionally be UNIQUE

• In other words, PostgreSQL 11 supports upsert!

• Example:

24/47 Copyright©2018 NTT Corp. All Rights Reserved.

INSERT ON CONFLICT or upsert

-- note that there is a unique constraint on id column

create table accounts (id text unique, balance double) partition by hash (id);

create table accounts0 partition of accounts for values with (modulus 4, remainder 0);

create table accounts1 partition of accounts for values with (modulus 4, remainder 1);

create table accounts2 partition of accounts for values with (modulus 4, remainder 2);

create table accounts3 partition of accounts for values with (modulus 4, remainder 3);

insert into accounts values (1, 100);

insert into accounts values (1, 150) on conflict (id) do update set balance =

excluded.balance;

select tableoid::regclass, * from accounts;

 tableoid │ id │ balance

───────────┼────┼─────────

 accounts1 │ 1 │ 150

(1 row)

25/47 Copyright©2018 NTT Corp. All Rights Reserved.

INSERT ON CONFLICT or upsert

-- one more example, just to show that DO NOTHING action works too! :)

create table branches (id int unique, name text) partition by hash (id);

create table branches0 partition of branches for values with (modulus 3, remainder 0);

create table branches1 partition of branches for values with (modulus 3, remainder 1);

create table branches2 partition of branches for values with (modulus 3, remainder 2);

insert into branches values (1, 'SF') on conflict (id) do nothing;

insert into branches values (1, 'SF') on conflict (id) do nothing;

select tableoid::regclass, * from branches;

 tableoid │ id │ name

───────────┼────┼──────

 branches2 │ 1 │ SF

26/47 Copyright©2018 NTT Corp. All Rights Reserved.

Optimization features

• Improved partition pruning mechanism

• Run-time partition pruning

• Partitionwise join and aggregation

27/47 Copyright©2018 NTT Corp. All Rights Reserved.

Improved partition pruning mechanism

• With PostgreSQL 10, partition pruning occurs by means of constraint exclusion

 Need to look at every partition and prune those whose partition constraint contradicts

query's WHERE condition

 Having to look at each partition makes pruning a scalability bottleneck

28/47 Copyright©2018 NTT Corp. All Rights Reserved.

Improved partition pruning mechanism

• With PostgreSQL 11, looking at parent table is enough to decide which partitions to prune, so

pruning is no longer a bottleneck

29/47 Copyright©2018 NTT Corp. All Rights Reserved.

Run-time pruning or dynamic pruning

• With PostgreSQL 10, pruning can only occur during planning, so the following cases can't use it:

 Extended query protocol is used (such as with prepared statements), and a generic plan is

deemed cheaper

 When scanning a partitioned table lying on the inner side of nested loop join with join key

same as the partition key

 Partition key is compared to a subquery

• With PostgreSQL 11, planner can now create a plan such that pruning can kick in during

execution, so the above cases don’t need to scan all partitions

• Example:

30/47 Copyright©2018 NTT Corp. All Rights Reserved.

Run-time pruning or dynamic pruning

-- firstly, this is what happens on PostgreSQL 10 which lacks this feature

explain (analyze, costs off, timing off) select * from sensor_readings where left(name, 2)
= (select 'BA');
 QUERY PLAN
──
 Append (actual rows=1 loops=1)
 InitPlan 1 (returns $0)
 -> Result (actual rows=1 loops=1)
 -> Seq Scan on "sensor_readings_AB" (actual rows=0 loops=1)
 Filter: ("left"(name, 2) = $0)
 -> Seq Scan on "sensor_readings_CD" (actual rows=1 loops=1)
 Filter: ("left"(name, 2) = $0)
 -> Seq Scan on "sensor_readings_BA" (actual rows=0 loops=1)
 Filter: ("left"(name, 2) = $0)
 Rows Removed by Filter: 1
 Planning time: 0.691 ms
 Execution time: 0.152 ms
(13 rows)

31/47 Copyright©2018 NTT Corp. All Rights Reserved.

Run-time pruning or dynamic pruning

-- PostgreSQL 11

explain (analyze, costs off, timing off) select * from sensor_readings where left(name, 2)
= (select 'BA');
 QUERY PLAN
──
 Append (actual rows=0 loops=1)
 InitPlan 1 (returns $0)
 -> Result (actual rows=1 loops=1)
 -> Seq Scan on "sensor_readings_AB" (never executed)
 Filter: ("left"(name, 2) = $0)
 -> Seq Scan on "sensor_readings_BA" (actual rows=1 loops=1)
 Filter: ("left"(name, 2) = $0)
 -> Seq Scan on "sensor_readings_CD" (never executed)
 Filter: ("left"(name, 2) = $0)
 Planning Time: 1.641 ms
 Execution Time: 0.315 ms
(11 rows)

• There is also a new parameter called enable_partition_pruning to turn pruning off if you want

 Controls both plan-time and run-time pruning

32/47 Copyright©2018 NTT Corp. All Rights Reserved.

Partitionwise join and aggregation

• It's a good strategy in general to push as much work as possible down to individual partitions,

because they're smaller than the whole table

 Being small means more reliable statistics and ability to use hash-based join or aggregation

• With PostgreSQL 10, join and aggregation have to wait until all partitions are scanned and their

outputs combined

33/47 Copyright©2018 NTT Corp. All Rights Reserved.

Partitionwise join and aggregation

• With PostgreSQL 11, both joins and aggregation can be performed at partition level, using

techniques called partitionwise join and aggregation, respectively

34/47 Copyright©2018 NTT Corp. All Rights Reserved.

Partitionwise join and aggregation

• Partitionwise aggregation is performed in one step per partition, if grouped on the partition key

 If not grouped or if grouping key doesn't contain partition key, then it is carried out in two

stages where a partial aggregate is computed per partition and all partial aggregates are

later combined

• Partitionwise join is restricted to the case where both sides have exactly same set of partitions

• Both partitionwise join and aggregation optimizations are currently disable by default

 To enable, use enable_partitionwise_join and enable_partitionwise_aggregate, respectively

35/47 Copyright©2018 NTT Corp. All Rights Reserved.

Performance problems

• While it's great that PostgreSQL 11 considerably improved partitioning usability, users still can't

go beyond hundreds of partitions without performance degrading significantly

36/47 Copyright©2018 NTT Corp. All Rights Reserved.

Performance problems

• PostgreSQL 11 slightly improves SELECT performance because it can now use the new pruning

mechanism which scales well, but there are other bottlenecks in how planner handles partitions

• UPDATE (and DELETE) performance is same as PostgreSQL 10, because they cannot use the new

pruning mechanism

37/47 Copyright©2018 NTT Corp. All Rights Reserved.

Performance problems

• Here’s single-row insert command which affects a single partition

• Again, PostgreSQL 11 performs slightly better due to some improvements to tuple routing code

38/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• Some of the patches under development will lead to better performance and scalability

39/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• Currently, for selects and updates, partitions are opened long before planner performs pruning

 Patches refactor the planner such that partitions can be opened after pruning

40/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• For inserts, all partitions are locked at the beginning of the execution

 Patches modify the execution to lock only the partitions that are affected

41/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• Performance of simple select, update, and insert queries

 Figures should not deteriorate too significantly even beyond 8192 partitions

42/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• Single-row Inserts

43/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• Patch to improve planner to speed up and scale better for queries that affect 1 or few partitions

 https://commitfest.postgresql.org/20/1778/

• Patch to delay locking of partitions

 https://commitfest.postgresql.org/21/1887/ (insert/update tuple routing)

 https://commitfest.postgresql.org/21/1897/ (for all queries using generic plans)

• Patch to avoid MergeAppend overhead in some cases when scanning partitions

 https://commitfest.postgresql.org/21/1850/

https://commitfest.postgresql.org/20/1778/
https://commitfest.postgresql.org/20/1778/
https://commitfest.postgresql.org/21/1887/
https://commitfest.postgresql.org/21/1887/
https://commitfest.postgresql.org/21/1897/
https://commitfest.postgresql.org/21/1897/
https://commitfest.postgresql.org/21/1850/

44/47 Copyright©2018 NTT Corp. All Rights Reserved.

Future (performance)

• Patches so far only optimize the cases where 1 or few partitions are accessed due to pruning

 There can be situations where planner can't prune, so planner must consider all partitions

which can get really slow as the number of partitions increases

 Existing plan nodes to scan or modify (update/delete) require planner to look at each

partition individually to select an optimal scan method for each

 Maybe, create new plan node(s) that doesn't require planner to look at partitions

45/47 Copyright©2018 NTT Corp. All Rights Reserved.

Summary

• Declarative partitioning basics

• Limitations of declarative partitioning in PostgreSQL 10

• New partitioning features in PostgreSQL 11

• Performance and scalability problems

• Ongoing and future work for improving performance and scalability

46/47 Copyright©2018 NTT Corp. All Rights Reserved.

References

• Partitioning Improvements in PostgreSQL 11 (Robert Haas)

 https://postgresconf.org/conferences/2018/program/proposals/partitioning-

improvements-in-postgresql-11

• Partitioning Improvements in v11 (Alvaro Herrera)

 https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf

• Partitioning Improvements in PostgreSQL 11 (2ndQuadrant Blog, Alvaro Herrera)

 https://blog.2ndquadrant.com/partitioning-improvements-pg11/

https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/

47/47 Copyright©2018 NTT Corp. All Rights Reserved.

Thank you!

• Questions?

