
Copyright©2018 NTT Corp. All Rights Reserved.

Partitioning Shines in PostgreSQL 11

Amit Langote, NTT OSS Center

PGConf.ASIA, Tokyo

Dec 11, 2018

1/47 Copyright©2018 NTT Corp. All Rights Reserved.

About me

• Amit Langote

• Work at NTT OSS Center developing PostgreSQL

• Contributed mainly to table partitioning

• Gave a presentation on related topic at the last year’s PGConf.ASIA

2/47 Copyright©2018 NTT Corp. All Rights Reserved.

Agenda

• What is partitioning?

• What is declarative partitioning?

• Limitations of partitioning in PostgreSQL 10

• New partitioning features in PostgreSQL 11

• Explanation of new partitioning features

• Performance problems

• Ongoing work for PostgreSQL 12 for performance

• Future work on performance

3/47 Copyright©2018 NTT Corp. All Rights Reserved.

What is partitioning?

• Dividing a large table into smaller ones for manageability and performance

• Manageability: quick archival and maintenance of smaller chunks of independent data

4/47 Copyright©2018 NTT Corp. All Rights Reserved.

What is partitioning?

• Performance: quick query execution by pruning unnecessary partitions and parallel

processing

https://user-images.githubusercontent.com/2574567/49066579-ee17f900-f264-11e8-9c12-66793f5bce8b.png
https://user-images.githubusercontent.com/2574567/49066581-eeb08f80-f264-11e8-9040-104cbc708722.png

5/47 Copyright©2018 NTT Corp. All Rights Reserved.

• Scalability: partitioning related optimizations ensure that performance doesn’t degrade as the

data size increases

What is partitioning?

6/47 Copyright©2018 NTT Corp. All Rights Reserved.

What is declarative partitioning?

• A feature added in PostgreSQL 10 to make partitioning easier and faster

• Up to PostgreSQL 9.6

 Use table inheritance to link parent table to its partitions

 Add CHECK constraint to child tables as partition constraint (constraint exclusion can prune

unnecessary partitions based on it)

 Create BEFORE INSERT FOR EACH ROW trigger on the parent table to redirect inserted data

to correct partition (known as tuple routing)

• In PostgreSQL 10

 Create parent tables with PARTITION BY clause to specify how to divide the incoming data

based on the values of partition key columns

 Create partitions with PARTITION OF ... FOR VALUES clause to specify the set of partition

key values that partition allows

 Partition constraints and tuple routing handled internally

 Many limitations!

7/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 10 limitations

• No hash partitioning

• No default partition to "catch" unattended data

• No indexes and row-level triggers on parent tables

 Can be created on individual partitions manually

• No foreign key constraint on parent tables

 Can be created on individual partitions manually

• No UPDATE tuple routing

• No INSERT ON CONFLICT on parent tables

• Partition pruning still based on constraint exclusion

8/47 Copyright©2018 NTT Corp. All Rights Reserved.

New partitioning features in PostgreSQL 11

• Hash partitioning

• Default partition to "catch" unattended data

• Create indexes on parent tables

 To specify UNIQUE, include partition key columns in the index key

• AFTER ... FOR EACH ROW triggers on parent tables

 BEFORE ... FOR EACH ROW not supported!

• Create foreign key on parent tables

 Foreign keys referencing parent tables not supported!

• UPDATE tuple routing

• INSERT ON CONFLICT on parent tables

 Handling some cases requires UNIQUE index to be present

9/47 Copyright©2018 NTT Corp. All Rights Reserved.

New partitioning features in PostgreSQL 11

• New partitioning-based optimization features

 Improved partition pruning (no longer uses constraint exclusion)

 Run-time partition pruning

 Partitionwise join and aggregation

10/47 Copyright©2018 NTT Corp. All Rights Reserved.

Hash partitioning

• Sometimes it's not clear which values to assign to individual partitions

 Something you need to decide when using list and range partitioning

• Hash partitioning is useful in that case

• Just decide how many partitions to create

• Example with 4 hash partitions:

create table measurement (sensor_id text, data json) partition by hash (sensor_id);

create table measurement0 partition of measurement for values with (modulus 4, remainder 0);

create table measurement1 partition of measurement for values with (modulus 4, remainder 1);

create table measurement2 partition of measurement for values with (modulus 4, remainder 2);

create table measurement3 partition of measurement for values with (modulus 4, remainder 3);

11/47 Copyright©2018 NTT Corp. All Rights Reserved.

Hash partitioning

• Server will assign the partition by computing the remainder as hashfunc(sensor_id) % 4,

where hashfunc is a hashing function for text data type

• Hashing as described above ensures uniform distribution of rows among partitions

• Documentation contains tips on how to increase the number of hash partitions without needing

to redistribute the data contained in existing partitions

https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION

https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION

12/47 Copyright©2018 NTT Corp. All Rights Reserved.

Default partition

• In some cases, you may not know in advance all the values for which to create partitions

 No, PostgreSQL won't create a partition automatically if a new value shows up

 Instead you get an error that a partition for given value doesn't exist

• Default partition helps with that

 It doesn't have a specific set of values assigned to it

 Any value for which there is no partition defined will go into the default partition

• There can be only 1 default partition

• Hash partitioned tables cannot have default partition

• Syntax:

create table default_partition partition of parent_table default;

13/47 Copyright©2018 NTT Corp. All Rights Reserved.

Indexes

• NOT some new type of index that covers all partitions in one storage-level object

• Since parent table doesn't store data by itself, any indexes created on it should be cascaded to its

partitions which store data

 PostgreSQL 10 doesn't implement that cascading

• PostgreSQL 11 does!

• Any indexes defined on the parent are duplicated in all partitions

 Both existing partitions and those created or attached after-the-fact will have the index

• Parent indexes can be used for UNIQUE constraint too

 Must include partition key columns in the index key

• Example of a UNIQUE index:

14/47 Copyright©2018 NTT Corp. All Rights Reserved.

Indexes

create table accounts (id text, name text) partition by hash (id);

create table accounts0 partition of accounts for values with (modulus 4, remainder 0);

create table accounts1 partition of accounts for values with (modulus 4, remainder 1);

create table accounts2 partition of accounts for values with (modulus 4, remainder 2);

create table accounts3 partition of accounts for values with (modulus 4, remainder 3);

-- ok

create unique index on accounts (id);

-- can’t create unique index if its key doesn’t contain partition key

create unique index on accounts (name);

ERROR: insufficient columns in UNIQUE constraint definition

DETAIL: UNIQUE constraint on table "accounts" lacks column "id" which is part of the

partition key.

-- ok if it’s non-unique though

create index on accounts (name);

15/47 Copyright©2018 NTT Corp. All Rights Reserved.

Indexes

-- can also specify the UNIQUE or PRIMARY KEY constraint inline

drop table accounts;

create table accounts (id text primary key, name text) partition by hash (id);

create table accounts0 partition of accounts for values with (modulus 4, remainder 0);

create table accounts1 partition of accounts for values with (modulus 4, remainder 1);

create table accounts2 partition of accounts for values with (modulus 4, remainder 2);

create table accounts3 partition of accounts for values with (modulus 4, remainder 3);

16/47 Copyright©2018 NTT Corp. All Rights Reserved.

Indexes

-- see that the index is present in partitions

\d accounts0

 Table "public.accounts0"

 Column │ Type │ Collation │ Nullable │ Default

───────────┼─────────┼───────────┼──────────┼─────────

 id │ text │ │ not null │

 branch_id │ integer │ │ │

Partition of: accounts FOR VALUES WITH (modulus 4, remainder 0)

Indexes:

 "accounts0_pkey" PRIMARY KEY, btree (id)

17/47 Copyright©2018 NTT Corp. All Rights Reserved.

Triggers

• Again, not some new kind of trigger specialized for partitioned tables

• Parent tables can already have statement-level triggers, but any row-level triggers must be

defined on partitions due to certain implementation details

 PostgreSQL 10 doesn't implement cascading of trigger definition to partitions

• PostgreSQL 11 does!

• Only AFTER ... FOR EACH ROW triggers are cascaded

 Cascading BEFORE ... FOR EACH ROW triggers may be pursued in the future after taking

care of some corner cases

18/47 Copyright©2018 NTT Corp. All Rights Reserved.

Foreign keys

• With PostgreSQL 10, you can add foreign keys to individual partitions (in both directions), but not

to parent table

• PostgreSQL 11 lets you add it to parent table and cascades the definition to partitions

 But only the outgoing foreign keys

• Examples:

create table accounts (id text primary key, branch_id int) partition by hash (id);

create table accounts0 partition of accounts for values with (modulus 4, remainder 0);

create table accounts1 partition of accounts for values with (modulus 4, remainder 1);

create table accounts2 partition of accounts for values with (modulus 4, remainder 2);

create table accounts3 partition of accounts for values with (modulus 4, remainder 3);

create table branches (id int primary key, name text);

alter table accounts add foreign key (branch_id) references branches (id);

19/47 Copyright©2018 NTT Corp. All Rights Reserved.

Foreign keys

-- or specify the foreign key inline

drop table accounts;

create table accounts (id text primary key, branch_id int references branches) partition

by hash (id);

create table accounts0 partition of accounts for values with (modulus 4, remainder 0);

create table accounts1 partition of accounts for values with (modulus 4, remainder 1);

create table accounts2 partition of accounts for values with (modulus 4, remainder 2);

create table accounts3 partition of accounts for values with (modulus 4, remainder 3);

20/47 Copyright©2018 NTT Corp. All Rights Reserved.

Foreign keys

\d accounts0

 Table "public.accounts0"

 Column │ Type │ Collation │ Nullable │ Default

───────────┼─────────┼───────────┼──────────┼─────────

 id │ text │ │ not null │

 branch_id │ integer │ │ │

Partition of: accounts FOR VALUES WITH (modulus 4, remainder 0)

Indexes:

 "accounts0_pkey" PRIMARY KEY, btree (id)

Foreign-key constraints:

 "accounts_branch_id_fkey" FOREIGN KEY (branch_id) REFERENCES branches(id)

-- this doesn't work yet

create table history (aid text references accounts, delta int);

ERROR: cannot reference partitioned table "accounts"

21/47 Copyright©2018 NTT Corp. All Rights Reserved.

UPDATE tuple routing

• One may occasionally be forced to update the partition key of a row such that the new row needs

to be moved to another partition

 PostgreSQL 10 would throw its hands up and show an error message

• PostgreSQL 11 handles the case gracefully by re-routing the new row

• Consider the following somewhat artificial example:

create table sensor_readings (name text, reading int) partition by list (left(name, 2));

create table "sensor_readings_AB" partition of sensor_readings for values in ('AB');

create table "sensor_readings_CD" partition of sensor_readings for values in ('CD');

insert into sensor_readings values ('AB0001', 0), ('CD0001', 0);

-- realize sensor name's really 'BA0001', not 'AB0001', so create a partition like that

create table "sensor_readings_BA" partition of sensor_readings for values in ('BA');

22/47 Copyright©2018 NTT Corp. All Rights Reserved.

UPDATE tuple routing

-- try to update all 'AB0001' entries to reflect that; bad luck in PostgreSQL 10

update sensor_readings set name = 'BA0001' where name = 'AB0001';

ERROR: new row for relation "sensor_readings_AB" violates partition constraint

DETAIL: Failing row contains (BA0001, 0).

-- PostgreSQL 11 to the rescue

update sensor_readings set name = 'BA0001' where name = 'AB0001';

select tableoid::regclass, * from sensor_readings;

 tableoid │ name │ reading

──────────────────────┼────────┼─────────

 "sensor_readings_BA" │ BA0001 │ 0

 "sensor_readings_CD" │ CD0001 │ 0

(2 rows)

23/47 Copyright©2018 NTT Corp. All Rights Reserved.

INSERT ON CONFLICT or upsert

• It's annoying when useful features like upsert don't work whereas you would expect them to,

 Due to PostgreSQL 10's lack of support of indexes on parent tables, it would outright reject

upsert command, because an index is needed

 Indexes defined on individual partitions don't help, because planner doesn't consider them

(INSERT mentions parent table)

• PostgreSQL 11 supports adding indexes on parent tables, which can optionally be UNIQUE

• In other words, PostgreSQL 11 supports upsert!

• Example:

24/47 Copyright©2018 NTT Corp. All Rights Reserved.

INSERT ON CONFLICT or upsert

-- note that there is a unique constraint on id column

create table accounts (id text unique, balance double) partition by hash (id);

create table accounts0 partition of accounts for values with (modulus 4, remainder 0);

create table accounts1 partition of accounts for values with (modulus 4, remainder 1);

create table accounts2 partition of accounts for values with (modulus 4, remainder 2);

create table accounts3 partition of accounts for values with (modulus 4, remainder 3);

insert into accounts values (1, 100);

insert into accounts values (1, 150) on conflict (id) do update set balance =

excluded.balance;

select tableoid::regclass, * from accounts;

 tableoid │ id │ balance

───────────┼────┼─────────

 accounts1 │ 1 │ 150

(1 row)

25/47 Copyright©2018 NTT Corp. All Rights Reserved.

INSERT ON CONFLICT or upsert

-- one more example, just to show that DO NOTHING action works too! :)

create table branches (id int unique, name text) partition by hash (id);

create table branches0 partition of branches for values with (modulus 3, remainder 0);

create table branches1 partition of branches for values with (modulus 3, remainder 1);

create table branches2 partition of branches for values with (modulus 3, remainder 2);

insert into branches values (1, 'SF') on conflict (id) do nothing;

insert into branches values (1, 'SF') on conflict (id) do nothing;

select tableoid::regclass, * from branches;

 tableoid │ id │ name

───────────┼────┼──────

 branches2 │ 1 │ SF

26/47 Copyright©2018 NTT Corp. All Rights Reserved.

Optimization features

• Improved partition pruning mechanism

• Run-time partition pruning

• Partitionwise join and aggregation

27/47 Copyright©2018 NTT Corp. All Rights Reserved.

Improved partition pruning mechanism

• With PostgreSQL 10, partition pruning occurs by means of constraint exclusion

 Need to look at every partition and prune those whose partition constraint contradicts

query's WHERE condition

 Having to look at each partition makes pruning a scalability bottleneck

28/47 Copyright©2018 NTT Corp. All Rights Reserved.

Improved partition pruning mechanism

• With PostgreSQL 11, looking at parent table is enough to decide which partitions to prune, so

pruning is no longer a bottleneck

29/47 Copyright©2018 NTT Corp. All Rights Reserved.

Run-time pruning or dynamic pruning

• With PostgreSQL 10, pruning can only occur during planning, so the following cases can't use it:

 Extended query protocol is used (such as with prepared statements), and a generic plan is

deemed cheaper

 When scanning a partitioned table lying on the inner side of nested loop join with join key

same as the partition key

 Partition key is compared to a subquery

• With PostgreSQL 11, planner can now create a plan such that pruning can kick in during

execution, so the above cases don’t need to scan all partitions

• Example:

30/47 Copyright©2018 NTT Corp. All Rights Reserved.

Run-time pruning or dynamic pruning

-- firstly, this is what happens on PostgreSQL 10 which lacks this feature

explain (analyze, costs off, timing off) select * from sensor_readings where left(name, 2)
= (select 'BA');
 QUERY PLAN
──
 Append (actual rows=1 loops=1)
 InitPlan 1 (returns $0)
 -> Result (actual rows=1 loops=1)
 -> Seq Scan on "sensor_readings_AB" (actual rows=0 loops=1)
 Filter: ("left"(name, 2) = $0)
 -> Seq Scan on "sensor_readings_CD" (actual rows=1 loops=1)
 Filter: ("left"(name, 2) = $0)
 -> Seq Scan on "sensor_readings_BA" (actual rows=0 loops=1)
 Filter: ("left"(name, 2) = $0)
 Rows Removed by Filter: 1
 Planning time: 0.691 ms
 Execution time: 0.152 ms
(13 rows)

31/47 Copyright©2018 NTT Corp. All Rights Reserved.

Run-time pruning or dynamic pruning

-- PostgreSQL 11

explain (analyze, costs off, timing off) select * from sensor_readings where left(name, 2)
= (select 'BA');
 QUERY PLAN
──
 Append (actual rows=0 loops=1)
 InitPlan 1 (returns $0)
 -> Result (actual rows=1 loops=1)
 -> Seq Scan on "sensor_readings_AB" (never executed)
 Filter: ("left"(name, 2) = $0)
 -> Seq Scan on "sensor_readings_BA" (actual rows=1 loops=1)
 Filter: ("left"(name, 2) = $0)
 -> Seq Scan on "sensor_readings_CD" (never executed)
 Filter: ("left"(name, 2) = $0)
 Planning Time: 1.641 ms
 Execution Time: 0.315 ms
(11 rows)

• There is also a new parameter called enable_partition_pruning to turn pruning off if you want

 Controls both plan-time and run-time pruning

32/47 Copyright©2018 NTT Corp. All Rights Reserved.

Partitionwise join and aggregation

• It's a good strategy in general to push as much work as possible down to individual partitions,

because they're smaller than the whole table

 Being small means more reliable statistics and ability to use hash-based join or aggregation

• With PostgreSQL 10, join and aggregation have to wait until all partitions are scanned and their

outputs combined

33/47 Copyright©2018 NTT Corp. All Rights Reserved.

Partitionwise join and aggregation

• With PostgreSQL 11, both joins and aggregation can be performed at partition level, using

techniques called partitionwise join and aggregation, respectively

34/47 Copyright©2018 NTT Corp. All Rights Reserved.

Partitionwise join and aggregation

• Partitionwise aggregation is performed in one step per partition, if grouped on the partition key

 If not grouped or if grouping key doesn't contain partition key, then it is carried out in two

stages where a partial aggregate is computed per partition and all partial aggregates are

later combined

• Partitionwise join is restricted to the case where both sides have exactly same set of partitions

• Both partitionwise join and aggregation optimizations are currently disable by default

 To enable, use enable_partitionwise_join and enable_partitionwise_aggregate, respectively

35/47 Copyright©2018 NTT Corp. All Rights Reserved.

Performance problems

• While it's great that PostgreSQL 11 considerably improved partitioning usability, users still can't

go beyond hundreds of partitions without performance degrading significantly

36/47 Copyright©2018 NTT Corp. All Rights Reserved.

Performance problems

• PostgreSQL 11 slightly improves SELECT performance because it can now use the new pruning

mechanism which scales well, but there are other bottlenecks in how planner handles partitions

• UPDATE (and DELETE) performance is same as PostgreSQL 10, because they cannot use the new

pruning mechanism

37/47 Copyright©2018 NTT Corp. All Rights Reserved.

Performance problems

• Here’s single-row insert command which affects a single partition

• Again, PostgreSQL 11 performs slightly better due to some improvements to tuple routing code

38/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• Some of the patches under development will lead to better performance and scalability

39/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• Currently, for selects and updates, partitions are opened long before planner performs pruning

 Patches refactor the planner such that partitions can be opened after pruning

40/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• For inserts, all partitions are locked at the beginning of the execution

 Patches modify the execution to lock only the partitions that are affected

41/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• Performance of simple select, update, and insert queries

 Figures should not deteriorate too significantly even beyond 8192 partitions

42/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• Single-row Inserts

43/47 Copyright©2018 NTT Corp. All Rights Reserved.

PostgreSQL 12 ongoing work (performance)

• Patch to improve planner to speed up and scale better for queries that affect 1 or few partitions

 https://commitfest.postgresql.org/20/1778/

• Patch to delay locking of partitions

 https://commitfest.postgresql.org/21/1887/ (insert/update tuple routing)

 https://commitfest.postgresql.org/21/1897/ (for all queries using generic plans)

• Patch to avoid MergeAppend overhead in some cases when scanning partitions

 https://commitfest.postgresql.org/21/1850/

https://commitfest.postgresql.org/20/1778/
https://commitfest.postgresql.org/20/1778/
https://commitfest.postgresql.org/21/1887/
https://commitfest.postgresql.org/21/1887/
https://commitfest.postgresql.org/21/1897/
https://commitfest.postgresql.org/21/1897/
https://commitfest.postgresql.org/21/1850/

44/47 Copyright©2018 NTT Corp. All Rights Reserved.

Future (performance)

• Patches so far only optimize the cases where 1 or few partitions are accessed due to pruning

 There can be situations where planner can't prune, so planner must consider all partitions

which can get really slow as the number of partitions increases

 Existing plan nodes to scan or modify (update/delete) require planner to look at each

partition individually to select an optimal scan method for each

 Maybe, create new plan node(s) that doesn't require planner to look at partitions

45/47 Copyright©2018 NTT Corp. All Rights Reserved.

Summary

• Declarative partitioning basics

• Limitations of declarative partitioning in PostgreSQL 10

• New partitioning features in PostgreSQL 11

• Performance and scalability problems

• Ongoing and future work for improving performance and scalability

46/47 Copyright©2018 NTT Corp. All Rights Reserved.

References

• Partitioning Improvements in PostgreSQL 11 (Robert Haas)

 https://postgresconf.org/conferences/2018/program/proposals/partitioning-

improvements-in-postgresql-11

• Partitioning Improvements in v11 (Alvaro Herrera)

 https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf

• Partitioning Improvements in PostgreSQL 11 (2ndQuadrant Blog, Alvaro Herrera)

 https://blog.2ndquadrant.com/partitioning-improvements-pg11/

https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/

47/47 Copyright©2018 NTT Corp. All Rights Reserved.

Thank you!

• Questions?

