Partitioning Shines in PostgreSQL 11

Amit Langote, NTT OSS Center

PGConf.ASIA, Tokyo
Dec 11, 2018

Copyright©2018 NTT Corp. All Rights Reserved.

About me

* Amit Langote
« Work at NTT OSS Center developing PostgreSQL
* Contributed mainly to table partitioning

« Gave a presentation on related topic at the last year's PGConf.ASIA

e

<4

Innovative RED by NTT

Declarative Partitioning Has Arrived!

Amit Langote (NTT OSS Center)
Ashutosh Bapat (EnterpriseDB)

@PGConf.ASIA 2017, Tokyo

Copyright©®2017 NTT Corp. All Rights Reserved.

<

Innovative R&D by NTT

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 1/47

Agenda

* What is partitioning?

* What is declarative partitioning?

« Limitations of partitioning in PostgreSQL 10

« New partitioning features in PostgreSQL 11

» Explanation of new partitioning features

» Performance problems

» Ongoing work for PostgreSQL 12 for performance

» Future work on performance

N

Innovative R&D by NTT

Copyright©2018 NTT Corp. All Rights Reserved.

2/47

What is partitioning?

~

Innovative R&D by NTT

Dividing a large table into smaller ones for manageability and performance

Manageability: quick archival and maintenance of smaller chunks of independent data

DELETE FROM measurements

DROP TABLE measurements_janl8

/

ALTER TABLE measurements

DETACH PARTITION measurements_jan18

WHERE date < ‘2018-02-01’

measurements

measurements_janl8

measurements_feb18

measurements_dec18

VACUUM ANALYZE measurements_decl8

Copyright©2018 NTT Corp. All Rights Reserved.

3/47

What is partitioning?

B

4

Innovative R&D by NTT

» Performance: quick query execution by pruning unnecessary partitions and parallel

processing

SELECT *
FROM measurements
WHERE date = ‘2018-12-05

measurements

measurements_jan18 measurements_feb18

SELECT count(*)
FROM measurements

Gather

Worker 2
measurements_feb18

measurements_dec18 b

Worker 1

Worker 12

Copyright©2018 NTT Corp. All Rights Reserved. 4/47

https://user-images.githubusercontent.com/2574567/49066579-ee17f900-f264-11e8-9c12-66793f5bce8b.png
https://user-images.githubusercontent.com/2574567/49066581-eeb08f80-f264-11e8-9040-104cbc708722.png

—

What is partitioning? <

Innovative R&D by NTT

Scalability: partitioning related optimizations ensure that performance doesn’t degrade as the

data size increases

® NTT Copyright©2018 NTT Corp. All Rights Reserved.

5/47

What is declarative partitioning? <

Innovative R&D by NTT

* A feature added in PostgreSQL 10 to make partitioning easier and faster
» Up to PostgreSQL 9.6
> Use table inheritance to link parent table to its partitions
» Add CHECK constraint to child tables as partition constraint (constraint exclusion can prune
unnecessary partitions based on it)
> Create BEFORE INSERT FOR EACH ROW trigger on the parent table to redirect inserted data
to correct partition (known as tuple routing)
* In PostgreSQL 10
» Create parent tables with PARTITION BY clause to specify how to divide the incoming data
based on the values of partition key columns
» Create partitions with PARTITION OF ... FOR VALUES clause to specify the set of partition
key values that partition allows
> Partition constraints and tuple routing handled internally

» Many limitations!

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 6/47

PostgreSQL 10 limitations <

Innovative R&D by NTT

No hash partitioning

No default partition to "catch" unattended data

No indexes and row-level triggers on parent tables

» Can be created on individual partitions manually

No foreign key constraint on parent tables

» Can be created on individual partitions manually

No UPDATE tuple routing

No INSERT ON CONFLICT on parent tables

Partition pruning still based on constraint exclusion

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 7/47

Innovati ive R&D by NTT

New partitioning features in PostgreSQL 11 <

Hash partitioning

Default partition to "catch" unattended data

Create indexes on parent tables

» To specify UNIQUE, include partition key columns in the index key
AFTER ... FOR EACH ROW triggers on parent tables

> BEFORE ... FOR EACH ROW not supported!

Create foreign key on parent tables

» Foreign keys referencing parent tables not supported!
UPDATE tuple routing
INSERT ON CONFLICT on parent tables

» Handling some cases requires UNIQUE index to be present

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 8/47

New partitioning features in PostgreSQL 11 <

Innovati ive R&D by NTT

* New partitioning-based optimization features
» Improved partition pruning (no longer uses constraint exclusion)
» Run-time partition pruning

» Partitionwise join and aggregation

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 9/47

Hash partitioning :

Innovative R&D by NTT

Sometimes it's not clear which values to assign to individual partitions

» Something you need to decide when using list and range partitioning

Hash partitioning is useful in that case

Just decide how many partitions to create

Example with 4 hash partitions:

create table measurement (sensor_id text, data json) partition by hash (sensor_id);

create table measurement® partition of measurement for values with (modulus 4, remainder 0);
create table measurementl partition of measurement for values with (modulus 4, remainder 1);
create table measurement2 partition of measurement for values with (modulus 4, remainder 2);

create table measurement3 partition of measurement for values with (modulus 4, remainder 3);

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 10/47

Hash partitioning N

Innovative R&D by NTT

« Server will assign the partition by computing the remainder as hashfunc(sensor_id) % 4,
where hashfunc is a hashing function for text data type

» Hashing as described above ensures uniform distribution of rows among partitions

» Documentation contains tips on how to increase the number of hash partitions without needing
to redistribute the data contained in existing partitions

https://www.postgresdl.orqg/docs/devel/sql-createtable.htm|#SOL-CREATETABLE-PARTITION

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 11/47

https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION
https://www.postgresql.org/docs/devel/sql-createtable.html#SQL-CREATETABLE-PARTITION

Default partition <

Innovative R&D by NTT

In some cases, you may not know in advance all the values for which to create partitions
» No, PostgreSQL won't create a partition automatically if a new value shows up

> Instead you get an error that a partition for given value doesn't exist

Default partition helps with that
» It doesn't have a specific set of values assigned to it

» Any value for which there is no partition defined will go into the default partition

There can be only 1 default partition

Hash partitioned tables cannot have default partition

Syntax:

create table default partition partition of parent table default;

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 12/47

Indexes <

Innovative R&D by NTT

NOT some new type of index that covers all partitions in one storage-level object

Since parent table doesn't store data by itself, any indexes created on it should be cascaded to its
partitions which store data

> PostgreSQL 10 doesn't implement that cascading
PostgreSQL 11 does!

Any indexes defined on the parent are duplicated in all partitions

» Both existing partitions and those created or attached after-the-fact will have the index

Parent indexes can be used for UNIQUE constraint too
» Must include partition key columns in the index key

Example of a UNIQUE index:

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 13/47

Indexes

Create
Create
Create
Create
Create
-- ok

create

table
table
table
table
table

accounts (id text, name text) partition by

accountso
accountsl
accounts2

accounts3

unique index on

-- can’t create unique

create unique index on

ERROR:
DETAIL:

partition of accounts for values
partition of accounts for values
partition of accounts for values

partition of accounts for values

accounts (id);

index if its key doesn’t contain

accounts (name);

hash (id);

with (modulus
with (modulus
with (modulus

with (modulus

partition key

insufficient columns in UNIQUE constraint definition

~ B &

-

-

-

-

remainder
remainder
remainder

remainder

S

Innovative R&D by NTT

0);
1);
2);
3);

UNIQUE constraint on table "accounts" lacks column "id" which is part of the

partition key.

-- ok if it’s non-unique though

create index on accounts (name);

®) NTT

Copyright©2018 NTT Corp. All Rights Reserved.

14/47

Indexes

RS

Innovative R&D by NTT

-- can also specify the UNIQUE or PRIMARY KEY constraint inline

drop table accounts;

create table
create table
create table
create table

create table

accounts (id text primary key, name
accounts@ partition of accounts for
accountsl partition of accounts for
accounts2 partition of accounts for

accounts3 partition of accounts for

text) partition by hash (id);

values
values
values

values

with (modulus 4, remainder 0);
with (modulus 4, remainder 1);
with (modulus 4, remainder 2);

with (modulus 4, remainder 3);

Copyright©2018 NTT Corp. All Rights Reserved.

15/47

Indexes <

Innovative R&D by NTT

-- see that the index is present in partitions

\d accounts®o

Table "public.accounts@”

Column | Type | Collation | Nullable | Default
| | | |

id | text | | not null |

branch_id | integer | | |

Partition of: accounts FOR VALUES WITH (modulus 4, remainder 0)
Indexes:

"accounts@ pkey" PRIMARY KEY, btree (id)

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 16/47

Triggers .

Innovative R&D by NTT

Again, not some new kind of trigger specialized for partitioned tables

Parent tables can already have statement-level triggers, but any row-level triggers must be
defined on partitions due to certain implementation details

» PostgreSQL 10 doesn't implement cascading of trigger definition to partitions
PostgreSQL 11 does!
Only AFTER ... FOR EACH ROW triggers are cascaded

» Cascading BEFORE ... FOR EACH ROW triggers may be pursued in the future after taking

care of some corner cases

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 17/47

Foreign keys

.

Innovative R&D by NTT

» With PostgreSQL 10, you can add foreign keys to individual partitions (in both directions), but not

to parent table

» PostgreSQL 11 lets you add it to parent table and cascades the definition to partitions

» But only the outgoing foreign keys

« Examples:

create
create
create
create
create

create

table
table
table
table
table
table

accounts (id text primary key, branch_id int) partition by hash (id);

accounts@ partition of accounts for
accountsl partition of accounts for
accounts2 partition of accounts for

accounts3 partition of accounts for

values with (modulus 4, remainder
values with (modulus 4, remainder
values with (modulus 4, remainder

values with (modulus 4, remainder

branches (id int primary key, name text);

alter table accounts add foreign key (branch _id) references branches (id);

®) NTT

0);
1);
2);
3);

Copyright©2018 NTT Corp. All Rights Reserved. 18/47

Foreign

-- or specify the foreign key inline

keys

drop table accounts;

~

Innovative R&D by NTT

create table accounts (id text primary key, branch_id int references branches) partition

by hash (id);

create table
create table
create table

create table

accounts® partition
accountsl partition
accounts2 partition

accounts3 partition

of
of
of
of

accounts
accounts
accounts

accounts

for
for
for

for

values
values
values

values

with (modulus
with (modulus
with (modulus

with (modulus

>~ B B

-

-

-

-

remainder
remainder
remainder

remainder

0);
1);
2);
3);

Copyright©2018 NTT Corp. All Rights Reserved. 19/47

Foreign keys o

Innovative R&D by NTT

\d accounts®o

Table "public.accounts@”

Column | Type | Collation | Nullable | Default
| | | |
id | text | | not null |
branch_id | integer | | |

Partition of: accounts FOR VALUES WITH (modulus 4, remainder 0)
Indexes:

"accounts@ pkey" PRIMARY KEY, btree (id)
Foreign-key constraints:

"accounts_branch_id fkey" FOREIGN KEY (branch_id) REFERENCES branches(id)
-- this doesn't work yet

create table history (aid text references accounts, delta int);

ERROR: cannot reference partitioned table "accounts"”

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 20/47

UPDATE tuple routing <

Innovative R&D by NTT

» One may occasionally be forced to update the partition key of a row such that the new row needs
to be moved to another partition
» PostgreSQL 10 would throw its hands up and show an error message
» PostgreSQL 11 handles the case gracefully by re-routing the new row

 Consider the following somewhat artificial example:

create table sensor_readings (name text, reading int) partition by list (left(name, 2));
create table "sensor_readings AB" partition of sensor_readings for values in ('AB');
create table "sensor_readings CD" partition of sensor_readings for values in ('CD');

insert into sensor_readings values ('ABo00l1', ©), ('CDooOl', 0);

-- realize sensor name's really 'BA@OO1l', not 'ABOOOl', so create a partition like that

create table "sensor_readings BA" partition of sensor_readings for values in ('BA');

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 21/47

UPDATE tuple routing <

Innovative R&D by NTT

-- try to update all 'ABOOO1l' entries to reflect that; bad luck in PostgreSQL 10
update sensor _readings set name = 'BAOOO1l' where name = 'AB00O1';
ERROR: new row for relation "sensor_readings_AB" violates partition constraint

DETAIL: Failing row contains (BA@©O1l, 0).
-- PostgreSQL 11 to the rescue

update sensor _readings set name = 'BAOOO1l' where name = 'AB00O1’;

select tableoid::regclass, * from sensor_readings;

tableoid | name | reading

| |

| |
"sensor_readings BA" | BAGOO1 | %)
"sensor_readings CD" | CDoool | %]

(2 rows)

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 22/47

INSERT ON CONFLICT or upsert 4

[-
« It's annoying when useful features like upsert don't work whereas you would expect them to,

» Due to PostgreSQL 10's lack of support of indexes on parent tables, it would outright reject

upsert command, because an index is needed

» Indexes defined on individual partitions don't help, because planner doesn't consider them

(INSERT mentions parent table)
» PostgreSQL 11 supports adding indexes on parent tables, which can optionally be UNIQUE

* In other words, PostgreSQL 11 supports upsert!

* Example:

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 23/47

INSERT ON CONFLICT or upsert

-- note that

Create
Create
create
create

create

insert

insert

table
table
table
table
table

there is a unique constraint on id column

accounts (id text unique, balance double) partition by hash

accounts@ partition
accountsl partition
accounts2 partition

accounts3 partition

of accounts
of accounts
of accounts

of accounts

into accounts values (1, 100);

for
for
for

for

into accounts values (1, 150) on conflict

excluded.balance;

select tableoid::regclass, * from accounts;

tableoid | id | balance
| |
| |
accountsl | 1 | 150
(1 row)

values
values
values

values

with (modulus
with (modulus
with (modulus

with (modulus

4,

J

-

4
4
4

J

(id);

remainder
remainder
remainder

remainder

(id) do update set balance =

.

Innovative R&D by NTT

0);
1);
2);
3);

Copyright©2018 NTT Corp. All Rights Reserved. 24/47

INSERT ON CONFLICT or upsert

[
-- one more example, just to show that DO NOTHING action works too! :)
create table branches (id int unique, name text) partition by hash (id);
create table branches® partition of branches for values with (modulus 3, remainder 9);
create table branchesl partition of branches for values with (modulus 3, remainder 1);
create table branches2 partition of branches for values with (modulus 3, remainder 2);
insert into branches values (1, 'SF') on conflict (id) do nothing;
insert into branches values (1, 'SF') on conflict (id) do nothing;
select tableoid::regclass, * from branches;
tableoid | id | name
—
branches2 | 1 | SF

® NTT Copyright©2018 NTT Corp. All Rights Reserved.

.

Innovative R&D by NTT

25/47

Optimization features o

Innovative R&D by NTT

 Improved partition pruning mechanism
* Run-time partition pruning

* Partitionwise join and aggregation

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 26/47

Improved partition pruning mechanism o

Innovative R&D by NTT

» With PostgreSQL 10, partition pruning occurs by means of constraint exclusion
> Need to look at every partition and prune those whose partition constraint contradicts
query's WHERE condition

» Having to look at each partition makes pruning a scalability bottleneck

select count(*)
from orders
where order_date = '2018-11-05'

orders

orders nov18 orders decl8 orders jan19
Constraint Constraint Constraint
exclusion exclusion exclusion

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 27/47

Improved partition pruning mechanism e

Innovative R&D by NTT

» With PostgreSQL 11, looking at parent table is enough to decide which partitions to prune, so

pruning is no longer a bottleneck

select count(*)
from orders
where order date ='2018-11-05'

Partition pruning F

orders

2018-11-01, 2018-12-01, 2019-01-01, 2019-02-01

orders_nov18

orders_dec18

T Q

orders_janl9

— Q—

Copyright©2018 NTT Corp. All Rights Reserved.

28/47

Run-time pruning or dynamic pruning 4

» With PostgreSQL 10, pruning can only occur during planning, so the following cases can't use it:
> Extended query protocol is used (such as with prepared statements), and a generic plan is

deemed cheaper

» When scanning a partitioned table lying on the inner side of nested loop join with join key
same as the partition key
> Partition key is compared to a subquery
* With PostgreSQL 11, planner can now create a plan such that pruning can kick in during
execution, so the above cases don't need to scan all partitions

* Example:

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 29/47

Run-time

-- firstly, this is what happens on PostgreSQL 10 which lacks this feature

pruning or dynamic pruning

~

Innovative R&D by NTT

explain (analyze, costs off, timing off) select * from sensor_readings where left(name, 2)

= (select 'BA');

QUERY PLAN

Append (actual

rows=1 loops=1)

InitPlan 1 (returns $0)

-> Result
-> Seqg Scan

Filter:

-> Seq Scan

Filter:

-> Seq Scan

Filter:

(actual rows=1 loops=1)

on "sensor_readings AB" (actual rows=0 loops=1)
("left"(name, 2) = $0)

on "sensor_readings CD" (actual rows=1 loops=1)
("left"(name, 2) = $0)

on "sensor_readings BA" (actual rows=0 loops=1)
("left"(name, 2) = $0)

Rows Removed by Filter: 1
Planning time: ©.691 ms

Execution time:
(13 rows)

®©) NTT

0.152 ms

Copyright©2018 NTT Corp. All Rights Reserved. 30/47

Run-time pruning or dynamic pruning <

Innovative R&D by NTT

T
-- PostgreSQL 11
explain (analyze, costs off, timing off) select * from sensor_readings where left(name, 2)

= (select 'BA');
QUERY PLAN

Append (actual rows=0 loops=1)
InitPlan 1 (returns $0)
-> Result (actual rows=1 loops=1)
-> Seq Scan on "sensor_readings AB" (never executed)
Filter: ("left"(name, 2) = $0)
-> Seq Scan on "sensor_readings BA" (actual rows=1 loops=1)
Filter: ("left"(name, 2) = $0)
-> Seq Scan on "sensor_readings CD" (never executed)
Filter: ("left"(name, 2) = $0)
Planning Time: 1.641 ms
Execution Time: 0.315 ms
(11 rows)

* There is also a new parameter called enable_partition_pruning to turn pruning off if you want

» Controls both plan-time and run-time pruning

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 31/47

Partitionwise join and aggregation

N

Innovative R&D by NTT

« It's a good strategy in general to push as much work as possible down to individual partitions,

because they're smaller than the whole table

> Being small means more reliable statistics and ability to use hash-based join or aggregation

« With PostgreSQL 10, join and aggregation have to wait until all partitions are scanned and their

outputs combined

select count(*)

from orders inner join order_items
on orders.id = order_items.id

orders

> orders_0

> orders_1

—> orders_2

X

order_items

—=>{ order_items_0

—>{ order_items_1

—>{ order_items_2

Copyright©2018 NTT Corp. All Rights Reserved.

32/47

Partitionwise join and aggregation

N

Innovative R&D by NTT

» With PostgreSQL 11, both joins and aggregation can be performed at partition level, using

techniques called partitionwise join and aggregation, respectively

select count(*)

from orders inner join order_items
on orders.id = order_items.id

orders N order_items

N orders_0

>< order_items_0

EEN orders_1

X order_items_1

L] orders_2

order_items_2

it

Copyright©2018 NTT Corp. All Rights Reserved.

33/47

Partitionwise join and aggregation <

Innovative R&D by NTT

Partitionwise aggregation is performed in one step per partition, if grouped on the partition key
> If not grouped or if grouping key doesn't contain partition key, then it is carried out in two
stages where a partial aggregate is computed per partition and all partial aggregates are

later combined

Partitionwise join is restricted to the case where both sides have exactly same set of partitions

Both partitionwise join and aggregation optimizations are currently disable by default

> To enable, use enable_partitionwise_join and enable_partitionwise_aggregate, respectively

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 34/47

Performance problems <

Innovati ive R&D by NTT

|
» While it's great that PostgreSQL 11 considerably improved partitioning usability, users still can't

go beyond hundreds of partitions without performance degrading significantly

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 35/47

Performance problems

o

i

Innovative R&D by NTT

4500

4000 +

3500 -+

3000 -~

2500 -

selects/sec
2000 -

HPG 10

mPG 11
1500 -

1000 ~

500 -

0 -

0 8 16 32 64 128 256 512

1024 2048 4096 8192

Number of partitions

updates/sec

5000

4500

4000

3500

3000

2500

2000

1500

1000

500 -

0 -

0

8

HPG 10
mPG11

16

32

T T T T 1
64 128 256 512 1024 2048 4096 8192

Number of partitions

» PostgreSQL 11 slightly improves SELECT performance because it can now use the new pruning

mechanism which scales well, but there are other bottlenecks in how planner handles partitions

» UPDATE (and DELETE) performance is same as PostgreSQL 10, because they cannot use the new

pruning mechanism

®©) NTT

Copyright©2018 NTT Corp. All Rights Reserved.

36/47

Performance problems

—

N

Innovative R&D by NTT

* Here's single-row insert command which affects a single partition

4500

4000 -+
3500
3000 -
2500
inserts/sec
2000 -
1500 -

1000 +

500 -

0 4

mPG 10

EPG11

64 128 256 512
Number of partitions

1024 2048 4096 8192

 Again, PostgreSQL 11 performs slightly better due to some improvements to tuple routing code

®©) NTT

Copyright©2018 NTT Corp. All Rights Reserved.

37/47

PostgreSQL 12 ongoing work (performance) 4

» Some of the patches under development will lead to better performance and scalability

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 38/47

PostgreSQL 12 ongoing work (performance) <

Innovative R&D by NTT

 Currently, for selects and updates, partitions are opened long before planner performs pruning

» Patches refactor the planner such that partitions can be opened after pruning

Query preprocessing

4‘{‘ partitions J

[

b
Query scan/join
planning

Before pruning

After pruning

Query upper-level
planning

[1

h'd

Plan finalization

Query preprocessing

Il
Query scan/join
planning

Before pruning

After pruning |

b4

Query upper-level
planning

L

Plan finalization

Copyright©2018 NTT Corp. All Rights Reserved.

.| partitions I

39/47

PostgreSQL 12 ongoing work (performance) <

—

Innovative R&D by NTT

* For inserts, all partitions are locked at the beginning of the execution

» Patches modify the execution to lock only the partitions that are affected

ExecInitModifyTable

U

ExecModifyTable

Execute plan

S 2

Execinsert

ExeclnitModifyTable

U

ExecModifyTable

Execute plan

Execinsert > iar—t'ltl/on—u’u

Copyright©2018 NTT Corp. All Rights Reserved.

40/47

PostgreSQL 12 ongoing work (performance) 4

» Performance of simple select, update, and insert queries

> Figures should not deteriorate too significantly even beyond 8192 partitions

4500 5000

4000

3500

3000 -+

2500
EPG 10 updates/sec mPG 10

2000

mPG 11 HPG11

W PG 12dev + patch m PG 12dev + patch

1500 -~

1000

500 -

0 8 16 32 64 128 256 512 1024 2048 4096 8192
Number of partitions Number of partitions

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 41/47

PostgreSQL 12 ongoing work (performance)

* Single-row Inserts

5000

4500

4000 -

3500 -

3000 -

inserts/sec 2500 -

2000 -+

1500 -

1000 +

500 -

0 ,

m PG 10
EPG11

M PG 12dev + patch

64 128 256 512 1024 2048
Number of partitions

4096 8192

Copyright©2018 NTT Corp. All Rights Reserved.

<

Innovative R&D by NTT

42/47

PostgreSQL 12 ongoing work (performance) <

Innovati ive R&D by NTT

 Patch to improve planner to speed up and scale better for queries that affect 1 or few partitions

> https://commitfest.postgresql.org/20/1778/

 Patch to delay locking of partitions

> https://commitfest.postgresqgl.org/21/1887/ (insert/update tuple routing)

» https://commitfest.postgresqgl.org/21/1897/ (for all queries using generic plans)
* Patch to avoid MergeAppend overhead in some cases when scanning partitions

> https://commitfest.postgresql.org/21/1850/

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 43/47

https://commitfest.postgresql.org/20/1778/
https://commitfest.postgresql.org/20/1778/
https://commitfest.postgresql.org/21/1887/
https://commitfest.postgresql.org/21/1887/
https://commitfest.postgresql.org/21/1897/
https://commitfest.postgresql.org/21/1897/
https://commitfest.postgresql.org/21/1850/

Future (performance) <

Innovative R&D by NTT

 Patches so far only optimize the cases where 1 or few partitions are accessed due to pruning
> There can be situations where planner can't prune, so planner must consider all partitions
which can get really slow as the number of partitions increases
» Existing plan nodes to scan or modify (update/delete) require planner to look at each
partition individually to select an optimal scan method for each

» Maybe, create new plan node(s) that doesn't require planner to look at partitions

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 44/47

Summary N

Innovative R&D by NTT

 Declarative partitioning basics

Limitations of declarative partitioning in PostgreSQL 10

New partitioning features in PostgreSQL 11

Performance and scalability problems

Ongoing and future work for improving performance and scalability

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 45/47

References <

Innovative R&D by NTT

* Partitioning Improvements in PostgreSQL 11 (Robert Haas)

> https://postgresconf.org/conferences/2018/program/proposals/partitioning-

improvements-in-postgresql-11

* Partitioning Improvements in v11 (Alvaro Herrera)

> https://wiki.postgresqgl.org/images/8/82/Alvherre-partitioning-2018.pdf

* Partitioning Improvements in PostgreSQL 11 (2ndQuadrant Blog, Alvaro Herrera)

> https://blog.2ndquadrant.com/partitioning-improvements-pgl1/

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 46/47

https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://postgresconf.org/conferences/2018/program/proposals/partitioning-improvements-in-postgresql-11
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://wiki.postgresql.org/images/8/82/Alvherre-partitioning-2018.pdf
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/
https://blog.2ndquadrant.com/partitioning-improvements-pg11/

i

Thank you! <

Innovative R&D by NTT

* Questions?

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 47/47

