
Copyright©2018 NTT Corp. All Rights Reserved.

Bloat and Fragmentation in PostgreSQL

NTT Open Source Center

Masahiko Sawada

PGConf.ASIA 2018

2Copyright©2018 NTT Corp. All Rights Reserved.

• Heap and Index

• Fragmentation and Bloat

• VACUUM 、 HOT(Heap Only Tuple)

• Clustered Tables

• Future

Index

3Copyright©2018 NTT Corp. All Rights Reserved.

• Almost all objects such as tables and indexes that
PostgreSQL manages consist of pages

• Page size is 8kB by default
• Changing by the configure script

• Block (on disk) = Page (on memory)

Pages

4Copyright©2018 NTT Corp. All Rights Reserved.

Page Layouts (Heaps and Indexes)

Page Header

ItemID ItemIDItemIDItemID

Special Area

TupleTuple

TupleTuple

5Copyright©2018 NTT Corp. All Rights Reserved.

• Combination of block number and offset number
• TID = (123, 86)

• Unique with in a table

TID - Tuple ID

 =# SELECT ctid, c FROM test ORDER BY c LIMIT 10;
 ctid | c
------------------+----
 (88495,130) | 1
 (0,1) | 1
 (88495,131) | 2
 (44247,179) | 2
 (0,2) | 2
 (88495,132) | 3
 (44247,180) | 3
 (0,3) | 3
 (88495,133) | 4
 (44247,181) | 4
(10 rows)

6Copyright©2018 NTT Corp. All Rights Reserved.

• MVCC = Multi Version Concurrency Control
• Concurrency control using multiple versions of row

• Reads don’t block writes

• PostgreSQL’s approach:

• INSERT and UPDATE create the new version of the row

• UPDATE and DELETE don’t immediately remove the old
version of the row

• Tuple visibility is determined by a ‘snapshot’

• Other DBMS might use UNDO log instead

• Old versions of rows have to be removed eventually
• VACUUM

MVCC

7Copyright©2018 NTT Corp. All Rights Reserved.

• Heap Table≒
• User created table, materialized view as well as system catalogs use

heap

• Optimized sequential access and accessed by index lookup

• Heaps have one free space map and one visibility map

Heap

8Copyright©2018 NTT Corp. All Rights Reserved.

• Tracks visibility information per blocks

• 1234_vm

• 2 bits / block
• all-visible bit : Used for Index Only Scans and vacuums

• all-frozen bit : Used for aggressive vacuums

• Isn’t relevant with bloating

Visibility Map

9Copyright©2018 NTT Corp. All Rights Reserved.

• Manage available space in tables or indexes

• 2-level binary tree
• Bottom level store the free space on each page

• Upper levels aggregate information from the lower levels

• Record free space at a granularity of 1/256th of a page

• 1234_fsm

Free Space Map

10Copyright©2018 NTT Corp. All Rights Reserved.

• Fast lookup a row in the table

• Various types of index
• B-tree

• Hash

• GIN

• Gist

• SP-Gist

• BRIN

• Bloom

• Indexes eventually points to somewhere in heap

Index

11Copyright©2018 NTT Corp. All Rights Reserved.

• One of the most popular type of index

• PostgreSQL has B+Tree

• One B+tree node is one page

• Leaf nodes have TIDs pointing to the heap

 Need new version index tuple when a new version is
created

B-tree

12Copyright©2018 NTT Corp. All Rights Reserved.

FRAGMENTATION AND BLOAT

13Copyright©2018 NTT Corp. All Rights Reserved.

• Fragmentation
• As pages split to make room to added to a page, there might be

excessive free space left on the pages

• Bloat
• Tables or indexes gets bigger than its actual size

• Less utilization efficiency of each pages

Fragmentation and Bloat

14Copyright©2018 NTT Corp. All Rights Reserved.

• Garbage collection

• Doesn’t block DELETE, INSERT and UPDATE (of course and
SELECT)

• VACUUM command

• VACUUM FULL is quite different feature

• Batch operation

Vacuum

15Copyright©2018 NTT Corp. All Rights Reserved.

1. Scan heap and collect dead tuples
1. Scanning page can skip using its visibility map

2. Recover dead space in all indexes

3. Recover dead space in heap

4. Loop 1 to 3 until the end of table

5. Truncate the tail of table if possible

Vacuum Processing

16Copyright©2018 NTT Corp. All Rights Reserved.

• Always start at the beginning of table

• Always visit all indexes (at multiple times)

Batch Operation

17Copyright©2018 NTT Corp. All Rights Reserved.

• Threshold-based, automatically vacuum execution

• Could be cancelled by a concurrent conflicting operation
• e.g. ALTER TABLE 、 TRUNCATE

• Vacuum delay is enabled by default

Auto Vacuum

18Copyright©2018 NTT Corp. All Rights Reserved.

• Cost-based vacuum delay

• Sleep vacuum_cost_delay(10 msec) time whenever the
vacuum cost goes above vacuum_cost_limit(200)

• Cost configurations
• vacuum_cost_page_hit (1)

• vacuum_cost_page_miss (10)

• vacuum_cost_page_dirty (20)

• By default, vacuum processes 16GB/h at maximum in
case where every pages don’t hit

Vacuum Delay

19Copyright©2018 NTT Corp. All Rights Reserved.

• Avoid creating new version of index entries

• Depending on updated column being updated

• Chain heap tuples

• Heap tuple chain is pruned opportunistically

HOT(Heap Only Tuple) Update

20Copyright©2018 NTT Corp. All Rights Reserved.

HOT Update & HOT pruning

Page Header

(0,1) (0,3)(0,2)

TupleTuple

Tuple

(0,1) (0,2) (0,3)

Index

Heap

21Copyright©2018 NTT Corp. All Rights Reserved.

HOT Update & HOT pruning

Page Header

(0,1) (0,3)(0,2)

TupleTuple

Tuple

(0,1) (0,2) (0,3)

Index

Heap

1. Update TID = (0,2) → (0,4)

(0,4)

Tuple

22Copyright©2018 NTT Corp. All Rights Reserved.

HOT Update & HOT pruning

Page Header

(0,1) (0,3)(0,2)

TupleTuple

Tuple

(0,1) (0,2) (0,3)

Index

Heap

2. Update TID = (0,4) → (0,5)

(0,4)

Tuple

(0,5)

Tuple

23Copyright©2018 NTT Corp. All Rights Reserved.

HOT Update & HOT pruning

Page Header

(0,1) (0,3)REDIRECTED

TupleTuple

(0,1) (0,2) (0,3)

Index

Heap

3. VACUUM

UNUSED (0,5)

Tuple

24Copyright©2018 NTT Corp. All Rights Reserved.

• Two conditions to use HOT updating

 Enough free space in the same page

 No Indexed column is not updated

• Perform HOT-pruning when the page utilization goes
above 90%

• IMO, the most important feature to prevent the table
bloat

Using HOT Update

25Copyright©2018 NTT Corp. All Rights Reserved.

• Fragmentation
• Free space map is not up-to-date

• Shortage of vacuum

• Concurrent long-transaction

Causes of Bloat

26Copyright©2018 NTT Corp. All Rights Reserved.

• Garbage collection speed < Generating garbage speed

• Solution : making vacuums run more faster
• Decrease vacuum delays

• Increase maintenance_work_mem
• Ideally perform the index vacuum only once

Shortage of Vacuum

27Copyright©2018 NTT Corp. All Rights Reserved.

• “Due to long-running transaction dead spaces are not
reclaimed” by a user

• That’s correct in a sense but this is actually inaccurate:

 Vacuum doesn’t remove row if there is a concurrent
snapshot that can see it, even for a one snapshot!

 This also means these row is NOT dead yet

• A row is dead when no one can see it

Vacuum and Snapshot

28Copyright©2018 NTT Corp. All Rights Reserved.

CLUSTERD TABLES

29Copyright©2018 NTT Corp. All Rights Reserved.

• An order of value on a column matches physical block
order

• pg_stats.correlation

• CLUSTER command

Clustered Table

30Copyright©2018 NTT Corp. All Rights Reserved.

=# SELECT * FROM tt LIMIT 10;
 a | b | c
-----+--------+--------
 1 | 9988 | 100000
 2 | 176 | 99999
 3 | 1066 | 99998
 4 | 1980 | 99997
 5 | 2966 | 99996
 6 | 5732 | 99995
 7 | 1751 | 99994
 8 | 3813 | 99993
 9 | 3031 | 99992
 10 | 5332 | 99991
(10 rows)

=# SELECT attname, correlation FROM pg_stats WHERE tablename = 'tt';
 attname | correlation
-------------+-------------
 a | 1
 b | 0.00493127
 c | -1
(3 rows)

Correlations

31Copyright©2018 NTT Corp. All Rights Reserved.

Performance Impact

=# EXPLAIN (buffers on, analyze on) SELECT * FROM tt WHERE a BETWEEN 200 AND 1000 LIMIT 1000;

 QUERY PLAN

 Limit (cost=0.29..38.07 rows=889 width=12) (actual time=0.063..1.153 rows=801 loops=1)
 Buffers: shared hit=9
 -> Index Scan using tt_a on tt (cost=0.29..38.07 rows=889 width=12) (actual time=0.060..0.942
rows=801 loops=1)
 Index Cond: ((a >= 200) AND (a <= 1000))
 Buffers: shared hit=9
 Planning Time: 0.388 ms
 Execution Time: 1.380 ms
(7 rows)

=# EXPLAIN (buffers on, analyze on) SELECT * FROM tt WHERE b BETWEEN 200 AND 1000 LIMIT 1000;

 QUERY PLAN

 Limit (cost=0.29..306.76 rows=1000 width=12) (actual time=0.052..3.176 rows=1000 loops=1)
 Buffers: shared hit=992
 -> Index Scan using tt_b on tt (cost=0.29..2435.18 rows=7945 width=12) (actual time=0.048..2.797
rows=1000 loops=1)
 Index Cond: ((b >= 200) AND (b <= 1000))
 Buffers: shared hit=992
 Planning Time: 0.749 ms
 Execution Time: 3.493 ms
(7 rows)

32Copyright©2018 NTT Corp. All Rights Reserved.

FUTURE

33Copyright©2018 NTT Corp. All Rights Reserved.

• More faster
• Parallelism

• Eager vacuum (retail index deletion)

• Non-batch operation

The Future of Vacuum

34Copyright©2018 NTT Corp. All Rights Reserved.

• Pluggable Storage Engine

• zheap - an UNDO log based new storage engine

 Prevent bloating by UPDATE

Good bye Vacuum ...?

35Copyright©2018 NTT Corp. All Rights Reserved.

• PostgreSQL creates multiple versions of rows within the
same table

• Has to eventually get rid of the unnecessary row versions

• Vacuum and auto vacuum
• Batched garbage collection

• HOT pruning
• Opportunistic garbage collection

• Clustered Table

• Future
• Parallelism and eager vacuum

• zheap

Conclusion

36Copyright©2018 NTT Corp. All Rights Reserved.

THANK YOU!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

