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• Heap and Index

• Fragmentation and Bloat

• VACUUM 、 HOT(Heap Only Tuple)

• Clustered Tables

• Future

Index
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• Almost all objects such as tables and indexes that 
PostgreSQL manages consist of pages

• Page size is 8kB by default
• Changing by the configure script

• Block (on disk) = Page (on memory)

Pages
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Page Layouts (Heaps and Indexes)

Page Header

ItemID ItemIDItemIDItemID

Special Area

TupleTuple

TupleTuple
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• Combination of block number and offset number
• TID = (123, 86) 

• Unique with in a table

TID - Tuple ID

 =# SELECT ctid, c FROM test ORDER BY c LIMIT 10;
        ctid       |  c 
------------------+----
 (88495,130) |  1
 (0,1)             |  1
 (88495,131) |  2
 (44247,179) |  2
 (0,2)             |  2
 (88495,132) |  3
 (44247,180) |  3
 (0,3)             |  3
 (88495,133) |  4
 (44247,181) |  4
(10 rows)
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• MVCC = Multi Version Concurrency Control
• Concurrency control using multiple versions of row

• Reads don’t block writes

• PostgreSQL’s  approach:

• INSERT and UPDATE create the new version of the row

• UPDATE and DELETE don’t immediately remove the old 
version of the row

• Tuple visibility is determined by a ‘snapshot’

• Other DBMS might use UNDO log instead

• Old versions of rows have to be removed eventually
• VACUUM

MVCC
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• Heap  Table≒
• User created table, materialized view as well as system catalogs use 

heap

• Optimized sequential access and accessed by index lookup

• Heaps have one free space map and one visibility map

Heap
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• Tracks visibility information per blocks

• 1234_vm

• 2 bits / block
• all-visible bit : Used for Index Only Scans and vacuums

• all-frozen bit : Used for aggressive vacuums

• Isn’t relevant with bloating

Visibility Map
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• Manage available space in tables or indexes

• 2-level binary tree
• Bottom level store the free space on each page

• Upper levels aggregate information from the lower levels

• Record free space at a granularity of 1/256th of a page

• 1234_fsm

Free Space Map
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• Fast lookup a row in the table

• Various types of index
• B-tree

• Hash

• GIN

• Gist

• SP-Gist

• BRIN

• Bloom

• Indexes eventually points to somewhere in heap

Index
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• One of the most popular type of index

• PostgreSQL has B+Tree

• One B+tree node is one page

• Leaf nodes have TIDs pointing to the heap

 Need new version index tuple when a new version is 
created

B-tree
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FRAGMENTATION AND BLOAT
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• Fragmentation
• As pages split to make room to added to a page, there might be 

excessive free space left on the pages

• Bloat
• Tables or indexes gets bigger than its actual size

• Less utilization efficiency of each pages

Fragmentation and Bloat



14Copyright©2018  NTT Corp. All Rights Reserved.

• Garbage collection

• Doesn’t block DELETE, INSERT and UPDATE (of course and 
SELECT)

• VACUUM command

• VACUUM FULL is quite different feature

• Batch operation

Vacuum
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1. Scan heap and collect dead tuples
1. Scanning page can skip using its visibility map

2. Recover dead space in all indexes

3. Recover dead space in heap

4. Loop 1 to 3 until the end of table

5. Truncate the tail of table if possible

Vacuum Processing
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• Always start at the beginning of table

• Always visit all indexes (at multiple times)

Batch Operation
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• Threshold-based, automatically vacuum execution

• Could be cancelled by a concurrent conflicting operation
• e.g. ALTER TABLE 、 TRUNCATE

• Vacuum delay is enabled by default

Auto Vacuum
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• Cost-based vacuum delay

• Sleep vacuum_cost_delay(10 msec) time whenever the 
vacuum cost goes above vacuum_cost_limit(200)

• Cost configurations
• vacuum_cost_page_hit (1)

• vacuum_cost_page_miss (10)

• vacuum_cost_page_dirty (20)

• By default, vacuum processes 16GB/h at maximum in 
case where every pages don’t hit

Vacuum Delay
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• Avoid creating new version of index entries

• Depending on updated column being updated

• Chain heap tuples

• Heap tuple chain is pruned opportunistically 

HOT(Heap Only Tuple) Update
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HOT Update & HOT pruning

Page Header

(0,1) (0,3)(0,2)

TupleTuple

Tuple

(0,1) (0,2) (0,3)

Index

Heap
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HOT Update & HOT pruning

Page Header

(0,1) (0,3)(0,2)

TupleTuple

Tuple

(0,1) (0,2) (0,3)

Index

Heap

1. Update TID = (0,2) → (0,4)

(0,4)

Tuple
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HOT Update & HOT pruning

Page Header

(0,1) (0,3)(0,2)

TupleTuple

Tuple

(0,1) (0,2) (0,3)

Index

Heap

2. Update TID = (0,4) → (0,5)

(0,4)

Tuple

(0,5)

Tuple
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HOT Update & HOT pruning

Page Header

(0,1) (0,3)REDIRECTED

TupleTuple

(0,1) (0,2) (0,3)

Index

Heap

3. VACUUM

UNUSED (0,5)

Tuple
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• Two conditions to use HOT updating

 Enough free space in the same page

 No Indexed column is not updated

• Perform HOT-pruning when the page utilization goes 
above 90%

• IMO, the most important feature to prevent the table 
bloat

Using HOT Update
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• Fragmentation
• Free space map is not up-to-date

• Shortage of vacuum

• Concurrent long-transaction

Causes of Bloat
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• Garbage collection speed < Generating garbage speed

• Solution : making vacuums run more faster
• Decrease vacuum delays

• Increase maintenance_work_mem
• Ideally perform the index vacuum only once

Shortage of Vacuum
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• “Due to long-running transaction dead spaces are not 
reclaimed” by a user

• That’s correct in a sense but this is actually inaccurate:

 Vacuum doesn’t remove row if there is a concurrent 
snapshot that can see it, even for a one snapshot!

 This also means these row is NOT dead yet

• A row is dead when no one can see it

Vacuum and Snapshot
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CLUSTERD TABLES
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• An order of value on a column matches physical block 
order

• pg_stats.correlation

• CLUSTER command

Clustered Table
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=# SELECT * FROM tt LIMIT 10;
  a  |    b     |   c    
-----+--------+--------
  1  | 9988  | 100000
  2  |  176   |  99999
  3  | 1066  |  99998
  4  | 1980  |  99997
  5  | 2966  |  99996
  6  | 5732  |  99995
  7  | 1751  |  99994
  8  | 3813  |  99993
  9  | 3031  |  99992
 10 | 5332  |  99991
(10 rows)

=# SELECT attname, correlation FROM pg_stats WHERE tablename = 'tt';
 attname | correlation 
-------------+-------------
      a       |           1
      b       |  0.00493127
      c       |          -1
(3 rows)

Correlations
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Performance Impact

=# EXPLAIN (buffers on, analyze on) SELECT * FROM tt WHERE a BETWEEN 200 AND 1000 LIMIT 1000;         
        
                                                     QUERY PLAN                                                      
---------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.29..38.07 rows=889 width=12) (actual time=0.063..1.153 rows=801 loops=1)
   Buffers: shared hit=9
   ->  Index Scan using tt_a on tt  (cost=0.29..38.07 rows=889 width=12) (actual time=0.060..0.942 
rows=801 loops=1)
         Index Cond: ((a >= 200) AND (a <= 1000))
         Buffers: shared hit=9
 Planning Time: 0.388 ms
 Execution Time: 1.380 ms
(7 rows)

=# EXPLAIN (buffers on, analyze on) SELECT * FROM tt WHERE b BETWEEN 200 AND 1000 LIMIT 1000;         
 
                                                       QUERY PLAN                                                        
-------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.29..306.76 rows=1000 width=12) (actual time=0.052..3.176 rows=1000 loops=1)
   Buffers: shared hit=992
   ->  Index Scan using tt_b on tt  (cost=0.29..2435.18 rows=7945 width=12) (actual time=0.048..2.797 
rows=1000 loops=1)
         Index Cond: ((b >= 200) AND (b <= 1000))
         Buffers: shared hit=992
 Planning Time: 0.749 ms
 Execution Time: 3.493 ms
(7 rows)
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FUTURE
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• More faster
• Parallelism

• Eager vacuum (retail index deletion)

• Non-batch operation

The Future of Vacuum



34Copyright©2018  NTT Corp. All Rights Reserved.

• Pluggable Storage Engine

• zheap - an UNDO log based new storage engine 

 Prevent bloating by UPDATE

Good bye Vacuum ...?
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• PostgreSQL creates multiple versions of rows within the 
same table

• Has to eventually get rid of the unnecessary row versions

• Vacuum and auto vacuum
• Batched garbage collection

• HOT pruning
• Opportunistic garbage collection

• Clustered Table

• Future
• Parallelism and eager vacuum

• zheap

Conclusion
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THANK YOU!
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