
A RU L S H A J I | P R I N C I PA L DATA BA S E CO N S U LTA N T | AT L A S S I A N

Database Architecture for SaaS

OUR USE OF POSTGRESQL

All of Atlassian’s
relational
database needs
are served by
PostgreSQL

Building a database
platform that is flexible,
scalable and secure, is
key to a successful SaaS
offering.

Agenda

Things to consider

Different ways to implement

What we did

How PostgreSQL helps (and doesn’t)

Questions ?

Agenda

Things to consider

Different ways to implement

What we did

How PostgreSQL helps (and doesn’t)

Questions ?

Considerations

Data Isolation

Blast radius

Noisy neighbour

Scalable

Seperate or co-located
There are varying levels of data separation from physical
to logical

Fundamentally about Multi tenancy
Directly translates into how we pack data belonging to
multiple tenants.

There are contributing factors
Regulatory compliance, customer requirements/
demands can all play a part

Considerations

Data Isolation

Blast radius

Noisy neighbour

Scalable

How disruptive can a failure be
When something goes wrong, we want it to be as
isolated as possible. ie., disruption is contained and
impact is felt for the smallest number of customers

How quickly can we come back
This also has a bearing on how quickly we can recover
from failures as well. RTO needs to be taken into
account.

Considerations

Data Isolation

Blast radius

Noisy neighbour

Scalable

Consistent user experience
Ideally we want to give all users a consistent level of
performance irrespective of the load on the system

A large tenant’s activity should have no bearing on the
experience of a smaller tenant

Maintaining an adequate level of service means that we
should also be able to throttle users to stop them from
hogging system resources

Considerations

Data Isolation

Blast radius

Noisy neighbour

Scalable

Should work the same for 10 or 10K tenants
Platform should be able to expand seamlessly as they
grow

High level of automation
We cannot have a platform that has a high operational
cost.

Minimal maintenance
Tooling that are specific to needs has to be built. Consider
options to backup, patching, upgrade, etc.

Agenda

Things to consider

Different ways to implement

What we did

How PostgreSQL helps (and doesn’t)

Questions ?

Each tenant is placed in a completely isolated
database server

Very expensive option

Could result in a lot of wasted resources and
probably overkill

Single Server,
Single tenant

There can be multiple database servers, each
hosting multiple databases, or schemas with
multiple tenants in each one of them.

When properly orchestrated, could be the ideal
solution

Provides a good balance in having tenants of
different profile to co-exist.

Multiple
Databases,
(or Schemas)
Multiple tenants

Truly multi tenanted system. Underneath, these
could be clustered and have multiple entry points.

Most requirements can still be achieved when
designed and structured properly

Does place severe constraints on certain
maintenance operations though

Single Database,
Multiple tenants

Agenda

Things to consider

Different ways to implement

What we did

How PostgreSQL helps (and doesn’t)

Questions ?

RDS PostgreSQL
Scalable, Low operational
costs and flexible (really)

Foundations

Apps and Tools
For monitoring, log analysis,

debugging, etc.

Cloud Native
Regions, AZs, Integrations and

more

Each tenant gets their own database

Seperate internal user as well, with access locked
down

“Unit of operation”, in many ways, is still an RDS
instance

Database per
tenant

Extensively using other AWS services such as
CloudFormation, CloudWatch, Performance
Insights, etc..

HIGH LEVEL ARCHITECTURE

HIGH AVAILABILITY ARCHITECTURE

Databases DataRDS Instances

~600 >300K ~70TB

Some numbers

Operations and Maintenance

Monitoring
Always look at aggregate level and drill
down if needed.

Backups
Both manual and automatic to satisfy
our RTO and RPO objectives.

Patching and upgrade
Our biggest pain point. Our scale does
not allow pg_upgrade based upgrades.

Noisy neighbours
Built tools to move databases between
instances

Not cloud native
Duplicating everything a cloud

provider does

Why RDS, not EC2+PostgreSQL

High cost
Lot more expensive to run and

maintain

Architecture
EC2+PG is more suited for a

Silo architecture

Agenda

Things to consider

Different ways to implement

What we did

How PostgreSQL helps (and doesn’t)

Questions ?

TSearch Managing
Query Execution

Database
Migrations

Log and Query
Analysis

Heavily Used

Patching and Upgrading

Replica creation time

Large amount of Writes

No Multi Master Replication

Database creation time

Consistent Performance

Works well with a wide
range of instance sizes

Very little overhead in
managing large number of

databases

HELPS HINDERS

Agenda

Things to consider

Different ways to implement

What we did

How PostgreSQL helps (and doesn’t)

Questions ?

A RU L S H A J I | P R I N C I PA L DATA BA S E CO N S U LTA N T | AT L A S S I A N

Thank you!

