
PostgreSQL Sharding and
HA: Theory and Practice

Aleksander Alekseev

A few words about me

● I live in Moscow, Russia;
● Develop software since 2007;
● Contribute to PostgreSQL since 2015;
● Work in Postgres Professional company;
● Interests: OSS, functional programming,

electronics, SDR, distributed systems, blogging,
podcasting;

In this talk

● A brief introduction to PostgreSQL replication (physical & logical);
● Solutions for HA / failover;
● Solutions for sharding;
● Q&A section :)

Target audience

● You believe that the replication is something very complicated;
● You think that the only way to scale is to scale horizontally;
● You’ve never configured physical and/or logical replication in PostgreSQL;
● You don’t know how to configure an auto-failover / HA;
● You would like to know what’s new in recent releases of PostgreSQL;
● You are looking for an idea for a project =).

What is not in this talk

● A boring retelling of the documentation;
● For the interested listeners there will be links to additional materials;

Disclaimer

In this talk I will mention a lot of databases,
extensions, etc. It doesn’t mean that I’m an expert in
all of them.

Replication

Leader
(Master)

Replica
(Follower)

What for?

● Load balancing
○ OLTP: writing to the leader, reading from replicas;
○ OLAP: analytical queries on a separate replica;
○ Taking backups from a separate replica;

● Failover / High Availability
○ Failover can be manual or automatic

● Delayed replication
● Replication doesn’t replace backups!

Streaming (or physical) replication

● In essence, it represents a transfer of the WAL over the network;
● Asynchronous

○ Fast, but the recent data can be lost;
● Synchronous

○ Slower (not as much in the same datacenter) but more reliable. It’s better to have at least
two replicas;

● Also - cascading replication (I had to mention it on some slide).

Fun facts!

Streaming replication:

● Doesn’t work between servers with different architecture;
● Doesn’t work between different versions of PostgreSQL [1];
● May not work between different operating systems / compilers [2];
● Also transactions may become visible on the leader and the replica in

different order;

[1]: According to https://simply.name/ru/upgrading-postgres-to-9.4.html a typical
downtime during the upgrade is a few minutes.

[2]: google://sizeof long compilers

https://simply.name/ru/upgrading-postgres-to-9.4.html

Logical replication

● Out-of-the-box starting from PostgreSQL 10;
● Previous approaches: Slony, Londiste, pglogical;

○ I personally would not recommend them, unless you are already using one of these.

Credits: logical replication

Yet another type of replication? Why?

● To replicate only part of the data;
● To upgrade without a downtime;
● To create temporary tables on replicas;
● To write any other data on replicas;
● To write to the replicated tables;
● One replica can replicate data from multiple leaders;
● In theory — you can build a multimaster*;
● Other scenarios, when physical replication for some reason doesn’t work well.

 * but it will be complicated and ugly.

Fun facts!

● Replicated tables may differ on the leader and the replica;
● The order of the columns may differ;
● The replica may have additional NULLable columns;
● The leader can’t have more columns then the replica, even if values in these

columns are always NULL.

Limitations of the logical replication

● All replicated tables should have a primary key;
● DDL, TRUNCATE & sequences are not replicated;
● Triggers are not executed in some cases [1].

[1]: https://postgr.es/m/20171009141341.GA16999@e733.localdomain

https://postgr.es/m/20171009141341.GA16999@e733.localdomain

synchronous_commit

● synchronous_commit = off
○ Asynchronous writing to the WAL, part of recent changes can be lost;
○ Unlike fsync = off can’t cause a database inconsistency;

● synchronous_commit = on
○ Synchronous writing to the WAL — leader’s and replica’s

● synchronous_commit = remote_write
○ Ditto, but without fsync() on replicas;

● synchronous_commit = local
○ Synchronous writing to the WAL on the leader only;

● synchronous_commit = remote_apply (>= 9.6)
○ Same as ‘on’ but also wait until changes will be applied to the data on replicas;

Fun fact!

● synchronous_commit can be changed not only in postgresql.conf,
but also in the session using SET command.

synchronous_standby_names

● synchronous_standby_names = ‘*’
○ Wait for ‘ack’ from any one replica;

● synchronous_standby_names = ANY 2(node1,node2,node3);
○ Quorum commit;
○ PostgreSQL >= 10;

● Other possible values [1] IMHO are not as interesting;

[1]: https://www.postgresql.org/docs/current/static/runtime-config-replication.html

https://www.postgresql.org/docs/current/static/runtime-config-replication.html

Credits: logical decoding (PostgreSQL 9.4)

Logical decoding
$ pg_recvlogical --slot=myslot --dbname=eax --user=eax \

 --create-slot --plugin=test_decoding

$ pg_recvlogical --slot=myslot --dbname=eax --user=eax --start -f -

Logical decoding: output
BEGIN 560

COMMIT 560

BEGIN 561

table public.test: INSERT: k[text]:'aaa' v[text]:'bbb'

COMMIT 561

Logical decoding & JSON
$ pg_recvlogical --slot=myslot --dbname=eax --user=eax \

 --create-slot --plugin=wal2json

$ pg_recvlogical --slot=myslot --dbname=eax --user=eax --start -f - | jq

Logical decoding & JSON: output

HA / Failover

● Manual
○ Used by many companies in practice;
○ OK if you have a moderate number of database servers (e.g. ~10);
○ See next two slides about modern hardware;

● Automatic
○ If your company is as big as Google :)

A few words about hardware: RAM
● You can put up to 3 TB of RAM in a single physical server these days;
● AWS instance x1.32xlarge (128 vCPU, 1952 GB RAM, 2 x 1920 GB SSD)

costs 9603$ a month [1];
● Also AWS announced new instances with 4-16 TB of RAM [2][3].

[1]: https://aws.amazon.com/ec2/pricing/on-demand/

[2]: https://aws.amazon.com/ec2/instance-types/x1e/

[3]: https://www.theregister.co.uk/2017/05/16/aws_ram_cram/

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/instance-types/x1e/
https://www.theregister.co.uk/2017/05/16/aws_ram_cram/

A few words about hardware: hard drives
● You can buy a 1 TB SSD for ~300$ [1];
● You can put up to 900 TB of data in a single physical server these days;
● Next year: up to 1.5 PB.

[1]: Samsung MZ-75E1T0BW, https://amazon.com/dp/B00OBRFFAS

https://amazon.com/dp/B00OBRFFAS

Manual failover howto

● Configure metrics and alerts using Nagios / Zabbix / Datadog / … ;
● Check them, make sure everything works;
● When something breaks:

○ Wake up in the night;
○ Figure out what’s going on;
○ Fix it (e.g. promote a replica);

● Since there are not many servers it will happen like once a year, so it’s OK;
● In many regards it’s more reliable than automatic failover;

Automatic HA / failover

● Repmgr
● Patroni
● Stolon
● Postgres-XL
● Postgres-X2, ex. Postgres-XC (abandoned?)
● Multimaster (part of Postgres Pro Enterprise)
● ???

Stolon

● Developed since 2015 by Sorint.lab;
● Written in Go;
● Relies on Consul or etcd for service discovery;
● Supports integration with Kubernetes;
● Very easy to configure and maintain;
● Handles crashes and netsplits correctly;

Stolon: how does it work?

Fun facts!

● Stolon routes both reads and writes to the leader. There is a workaround [1];
● It uses Consul or etcd only as a key-value storage. In particular, it doesn’t rely

on DNS support in Consul and other features.

[1]: https://github.com/sorintlab/stolon/issues/132

https://github.com/sorintlab/stolon/issues/132

Postgres Pro Multimaster

● Looks like a regular RDBMS for the user;
● Is a part of Postgres Pro Enterprise;
● Based on paper “Clock-SI: Snapshot Isolation for Partitioned Data Stores

Using Loosely Synchronized Clocks” [*];
● Developers: Konstantin Knizhnik, Stas Kelvich, Arseny Sher;

- https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/sameh
e-clocksi.srds2013.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/samehe-clocksi.srds2013.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/samehe-clocksi.srds2013.pdf

The Multimaster team

Existing solutions for sharding

● Manual sharding
● Citus
● Greenplum
● pg_shardman (part of Postgres Pro Enterprise)
● ???

Existing solutions for sharding

● Manual sharding
● Citus
● Greenplum
● pg_shardman (part of Postgres Pro Enterprise)
● ???

AFAIK designed mostly
for analytics

Manual sharding

● Used in practice by many companies;
● It’s OK if you don’t have (many) distributed transactions;
● Rebalancing is done quite simple with logical replication;
● For distributed transactions you can use Percolator-like approach [1];

○ Provides snapshot isolation only, so the write skew anomaly is possible. On the other hand
in some RDBMS this is the best you can get [2].

● Or even something simpler (e.g. based on log of idempotent operations);

[1]: http://rystsov.info/2012/09/01/cas.html

[2]: https://github.com/ept/hermitage/

http://rystsov.info/2012/09/01/cas.html
https://github.com/ept/hermitage/

pg_shardman

● Developed by the Postgres Pro Multimaster team;
● Is a part of Postgres Pro Enterprise;
● Supports replication factor > 1 (which is not true for some alternatives);
● It is currently in a state of beta-release;
● Please contact info@postgrespro.com and ask for a trial;
● Note that PostgresPro Enterprise is free for educational and non-commercial

use;

mailto:info@postgrespro.com

Not quite PostgreSQL

● Amazon Aurora
● CockroachDB

Amazon Aurora

● ACID with transparent failover, sharding and distributed transactions;
● Announced in 2014;
● Exists only in a cloud;
● Is compatible with MySQL and PostgreSQL [1] on the protocol level;
● There is a paper [2];

[1]: since Nov 2016 https://news.ycombinator.com/item?id=13072861

[2]: http://www.allthingsdistributed.com/files/p1041-verbitski.pdf

https://news.ycombinator.com/item?id=13072861
http://www.allthingsdistributed.com/files/p1041-verbitski.pdf

CochroachDB

● ACID with transparent failover, sharding and distributed transactions;
● Announced in 2014, is written in Go, is developed by ex-Google employees;
● Free and open source software;
● Is compatible with PostgreSQL on the protocol level;
● Passes Jepsen [*];
● Based on Spanner paper [*];

- https://www.cockroachlabs.com/blog/cockroachdb-beta-passes-jepsen-testing/
- https://static.googleusercontent.com/media/research.google.com/en//archive/s

panner-osdi2012.pdf

https://www.cockroachlabs.com/blog/cockroachdb-beta-passes-jepsen-testing/
https://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf

Links
● https://www.postgresql.org/docs/10/static/index.html
● https://github.com/sorintlab/stolon/
● https://github.com/eulerto/wal2json
● https://github.com/posix4e/jsoncdc
● https://github.com/citusdata/citus
● http://greenplum.org/
● https://postgrespro.com/products/postgrespro/enterprise
● https://aws.amazon.com/rds/aurora/
● https://www.cockroachlabs.com/

https://www.postgresql.org/docs/10/static/index.html
https://github.com/sorintlab/stolon/
https://github.com/eulerto/wal2json
https://github.com/posix4e/jsoncdc
https://github.com/citusdata/citus
http://greenplum.org/
https://postgrespro.com/products/postgrespro/enterprise
https://aws.amazon.com/rds/aurora/
https://www.cockroachlabs.com/

See you in Russia!

Thank you for your attention!

● a.alekseev@postgrespro.ru
● https://afiskon.github.io/
● https://postgrespro.com/
● https://github.com/postgrespro/

mailto:a.alekseev@postgrespro.ru
https://afiskon.github.io/
https://postgrespro.com/
https://github.com/postgrespro/

