
PostgreSQL Query Optimization

Step by step techniques

Ilya Kosmodemiansky (ik@dataegret.com)

Agenda 2

1. What is a slow query?

2. How to chose queries to optimize?

3. What is a query plan?

4. Optimization tools

5. Optimization examples

dataegret.com

Is this query slow? 3

QUERY PLAN
--
Limit (cost=12993.17..12993.17 rows=1 width=20) (actual time=606.385..606.385 rows=1 loops=1)
...
Planning time: 1.236 ms
Execution time: 607.057 ms

dataegret.com

Does this query perform well enough for your system? 4

• What is your baseline?
• 607.057 ms can be extremely fast for OLAP
• But 607.057 ms * 10000 parallel queries on OLTP?
• 607.057 ms on 10 y.o. SATA disks vs modern SSD

dataegret.com

Does this query perform well enough for your system? 4

• What is your baseline?

• 607.057 ms can be extremely fast for OLAP
• But 607.057 ms * 10000 parallel queries on OLTP?
• 607.057 ms on 10 y.o. SATA disks vs modern SSD

dataegret.com

Does this query perform well enough for your system? 4

• What is your baseline?
• 607.057 ms can be extremely fast for OLAP

• But 607.057 ms * 10000 parallel queries on OLTP?
• 607.057 ms on 10 y.o. SATA disks vs modern SSD

dataegret.com

Does this query perform well enough for your system? 4

• What is your baseline?
• 607.057 ms can be extremely fast for OLAP
• But 607.057 ms * 10000 parallel queries on OLTP?

• 607.057 ms on 10 y.o. SATA disks vs modern SSD

dataegret.com

Does this query perform well enough for your system? 4

• What is your baseline?
• 607.057 ms can be extremely fast for OLAP
• But 607.057 ms * 10000 parallel queries on OLTP?
• 607.057 ms on 10 y.o. SATA disks vs modern SSD

dataegret.com

How to find the queries to optimize? 5

• Often it is useless to optimize all queries

• log_min_duration_statement = 100ms
Everything that’s in the logs is due for review

• pg_stat_statements
Lot’s of useful stuff inside

• Monitoring system of choice
Hopefully it has query info accumulated and ranged

dataegret.com

How to find the queries to optimize? 5

• Often it is useless to optimize all queries
• log_min_duration_statement = 100ms
Everything that’s in the logs is due for review

• pg_stat_statements
Lot’s of useful stuff inside

• Monitoring system of choice
Hopefully it has query info accumulated and ranged

dataegret.com

How to find the queries to optimize? 5

• Often it is useless to optimize all queries
• log_min_duration_statement = 100ms
Everything that’s in the logs is due for review

• pg_stat_statements
Lot’s of useful stuff inside

• Monitoring system of choice
Hopefully it has query info accumulated and ranged

dataegret.com

How to find the queries to optimize? 5

• Often it is useless to optimize all queries
• log_min_duration_statement = 100ms
Everything that’s in the logs is due for review

• pg_stat_statements
Lot’s of useful stuff inside

• Monitoring system of choice
Hopefully it has query info accumulated and ranged

dataegret.com

How to find the queries to optimize? 6

dataegret.com

Which queries to optimize first? 7

SELECT sum(total_time) AS total_time,
sum(blk_read_time + blk_write_time) AS io_time,
sum(total_time - blk_read_time - blk_write_time) AS cpu_time,
sum(calls) AS ncalls,
sum(rows) AS total_rows

FROM pg_stat_statements
WHERE dbid IN (SELECT oid FROM pg_database WHERE datname=current_database())

dataegret.com

Which queries to optimize first? 8

WITH ttl AS (
SELECT sum(total_time) AS total_time, sum(blk_read_time + blk_write_time) AS io_time,

sum(total_time - blk_read_time - blk_write_time) AS cpu_time,
sum(calls) AS ncalls, sum(rows) AS total_rows

FROM pg_stat_statements WHERE dbid IN (
SELECT oid FROM pg_database WHERE datname=current_database())

)
SELECT *,(pss.total_time-pss.blk_read_time-pss.blk_write_time)/ttl.cpu_time*100 cpu_pct

FROM pg_stat_statements pss, ttl
WHERE (pss.total_time-pss.blk_read_time-pss.blk_write_time)/ttl.cpu_time >= 0.05
ORDER BY pss.total_time-pss.blk_read_time-pss.blk_write_time DESC LIMIT 1;

dataegret.com

Which queries to optimize first? 9

• Lot’s of metrics are possible to extract
• Requires time to come up with a good usable report
• DataEgret maintains it’s report in the public domain1

1https://github.com/dataegret/pg-utils/blob/master/sql/global_reports/query_stat_total.sql

dataegret.com

https://github.com/dataegret/pg-utils/blob/master/sql/global_reports/query_stat_total.sql

Details of the report 10

• Report operates with total_time, io_time and cpu_time, that is a difference
of the first two

• Report also normalizes queries and calculatesmd5 hash for faster
processing

• Main part of the report includes only those entries, that (any of the
conditions qualifies):

1. used more than 1% of total CPU or total IO time

2. returned more than 2% of all rows

3. had been called more than 2% of all query executions

• all other queries are combined into the other group
• report orders queries by total time spent, longest at the top

dataegret.com

Details of the report 11

total time: 19:59:57 (IO: 16.43%)
total queries: 200,609,344 (unique: 2,342)
report for all databases, version 0.9.5 @ PostgreSQL 9.6.3
tracking top 10000 queries, utilities off, logging 100ms+ queries
===
pos:1 total time: 05:38:45 (28.2%, CPU: 30.9%, IO: 14.5%) calls: 84,592,220 (42.17%) avg_time: 0.24ms (IO: 8.3%)
user: all db: all rows: 198,391,036 (24.34%) query:
other
===
pos:2 total time: 04:59:15 (24.9%, CPU: 24.0%, IO: 29.9%) calls: 5,610 (0.00%) avg_time: 3200.60ms (IO: 19.7%)
user: postgres db: --------- rows: 5,608,185 (0.69%) query:

WITH _deleted AS (DELETE FROM foos_2rm WHERE id IN (SELECT id FROM foos_2rm ORDER BY id LIMIT ?) RETURNING id)
DELETE FROM foos WHERE id IN (SELECT id FROM _deleted);
===
pos:3 total time: 00:45:06 (3.8%, CPU: 2.3%, IO: 11.1%) calls: 853,864 (0.43%) avg_time: 3.17ms (IO: 48.6%)
user: ---------_background db: --------- rows: 164,706 (0.02%) query:
SELECT "foo_stats_master".* FROM "foo_stats_master" WHERE (foo_stats_master.created_at >= ?) AND (foo_stats_master.created_at < ?)
AND "foo_stats_master"."action" IN (?, ?, ?, ?) AND ("foo_stats_master"."foo_board_id" IS NOT NULL)
AND "foo_stats_master"."user_ip_inet" = ? AND "foo_stats_master"."employer_id" = ?
ORDER BY "foo_stats_master"."created_at" DESC LIMIT ?

dataegret.com

So, we identified some queries to optimize 12

dataegret.com

So, we identified some queries to optimize 12

What comes next?

dataegret.com

EXPLAIN 13

• Any query can be prepended with EXPLAIN to see it’s execution plan
• EXPLAIN SELECT * FROM pg_database;

QUERY PLAN

Seq Scan on pg_database (cost=0.00..0.16 rows=6 width=271)
(1 row)

dataegret.com

What is execution plan? 14

• Query goes through several stages in it’s lifecycle
• 1. Connection

2. Parser

3. Rewrite system

4. Planner / Optimizer

5. Executor↔ [Workers]
6. Send results

• Planner prepares a plan for executor

dataegret.com

What is execution plan? 15

• It is a tree
• Nodes and operations on them
• Planner uses statistics to chose the optimal plan

dataegret.com

Details of EXPLAIN 16

EXPLAIN SELECT * FROM pg_database;
QUERY PLAN

Seq Scan on pg_database (cost=0.00..0.16 rows=6 width=271)
(1 row)

Seq Scan type of node operation

on pg_database object of node operation

cost=0.00..0.16 cost of the node

rows=6 estimated rows

width=271 average width of a row

dataegret.com

Types of node operations 17

• Seq Scan— sequential scan of whole relation
• Parallel Seq Scan— parallel sequential scan of whole relation
• Index Scan— targeted random IO (read index + read table)

• Index Only Scan— read only from index2
• Bitmap Index Scan— prepare a map of rows to read from relation,
possibly combining maps from several indexes

• Bitmap Heap Scan— use map from Bitmap Index Scan and read rows
from relation, always follows Bitmap Index Scan

• CTE Scan - read from Common Table Expression (WITH Block)
• Function Scan - read results, returned by a function
2https://wiki.postgresql.org/wiki/Index-only_scans

dataegret.com

https://wiki.postgresql.org/wiki/Index-only_scans

Cost of the node. Startup and total cost. 18

• A cost of fetching 8K block sequentially
• Cost is a relative value: a cost of 10 is 10× greater than a cost of 1

explain select * from posts order by id limit 5;
QUERY PLAN

--
Limit (cost=0.29..0.46 rows=5 width=28)

-> Index Scan using posts_pkey on posts (cost=0.29..347.29 rows=10000 width=28)
(2 rows)

• 0.29 + (347.29 - 0.29)*5/10000 = 0.4635

dataegret.com

Cost of the node. Startup and total cost. 18

• A cost of fetching 8K block sequentially
• Cost is a relative value: a cost of 10 is 10× greater than a cost of 1

explain select * from posts order by id limit 5;
QUERY PLAN

--
Limit (cost=0.29..0.46 rows=5 width=28)

-> Index Scan using posts_pkey on posts (cost=0.29..347.29 rows=10000 width=28)
(2 rows)

• 0.29 + (347.29 - 0.29)*5/10000 = 0.4635

dataegret.com

rows×width 19

• Rows × width of a root node gives a clue of a result size in bytes
• Even if the query is fast, lots of it’s calls can cause a huge traffic between
database and an application

• Thats why SELECT∗ is not a good idea

dataegret.com

Operations on nodes 20

• join – joins data from two nodes using appropriate join method
• sort – various methods of sorting
• limit – cuts the dataset off
• aggregate – performs aggregation
• hash aggregate – groups data
• unique – removes duplicates from sorted datasets
• gather – gather data from different workers

dataegret.com

Options of EXPLAIN command 21

EXPLAIN [ANALYZE] [VERBOSE] statement
EXPLAIN [(option [, ...])] statement

• ANALYZE executes statement and shows execution details
• VERBOSE verbose output
• COSTS show plan costs
• BUFFERS show information about buffers operated by the query
• TIMING show time spent
• SUMMARY show totals at the end of output
• FORMATTEXT |XML|JSON|YAML output in selected format

dataegret.com

Analyzing query 22

EXPLAIN (analyze) SELECT relname,relpages,reltuples FROM pg_class WHERE reltuples>10000;
QUERY PLAN

Seq Scan on pg_class (cost=0.00..5.55 rows=6 width=72) (actual time=0.069..0.073 rows=6 loops=1)

Filter: (reltuples > ’10000’::double precision)
Rows Removed by Filter: 334

Planning time: 0.102 ms
Execution time: 0.087 ms

(5 rows)

actual time=0.069..0.073 startup and total time of node execution

rows=6 actual rows

loops=1 number of times node had been executed

Rows Removed by Filter: 334 node processing details

dataegret.com

A bit more complex query 23

EXPLAIN (analyze, buffers) SELECT r.relname, a.attname FROM pg_class r JOIN pg_attribute a ON a.attrelid=r.oid
WHERE a.attnum>0 AND NOT attisdropped;

QUERY PLAN
--
Hash Join (cost=8.95..66.58 rows=1770 width=128) (actual time=0.215..2.246 rows=2039 loops=1)

Hash Cond: (a.attrelid = r.oid)
Buffers: shared hit=59 read=2
I/O Timings: read=0.270
-> Seq Scan on pg_attribute a (cost=0.00..33.29 rows=1770 width=68) (actual time=0.009..1.148 rows=2039 loops=1)

Filter: ((NOT attisdropped) AND (attnum > 0))
Rows Removed by Filter: 587
Buffers: shared hit=46 read=2
I/O Timings: read=0.270

-> Hash (cost=4.70..4.70 rows=340 width=68) (actual time=0.198..0.198 rows=340 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 42kB
Buffers: shared hit=13
-> Seq Scan on pg_class r (cost=0.00..4.70 rows=340 width=68) (actual time=0.002..0.095 rows=340 loops=1)

Buffers: shared hit=13
Planning time: 0.202 ms
Execution time: 2.554 ms

(16 rows)

dataegret.com

Now we have all we need to optimize 24

• We know what we want in terms of performance
• We know what query to optimize
• We have all the tools (EXPLAIN ANALYZE)

• Now we only need to minimize the time executor spends on each node
• Or actually try to figure out what the query should do:
Never optimize a SQL-query itself, try to optimize the operation it
does

dataegret.com

Now we have all we need to optimize 24

• We know what we want in terms of performance
• We know what query to optimize
• We have all the tools (EXPLAIN ANALYZE)
• Now we only need to minimize the time executor spends on each node

• Or actually try to figure out what the query should do:
Never optimize a SQL-query itself, try to optimize the operation it
does

dataegret.com

Now we have all we need to optimize 24

• We know what we want in terms of performance
• We know what query to optimize
• We have all the tools (EXPLAIN ANALYZE)
• Now we only need to minimize the time executor spends on each node
• Or actually try to figure out what the query should do:
Never optimize a SQL-query itself, try to optimize the operation it
does

dataegret.com

Simplest B-tree indexing 25

EXPLAIN ANALYZE SELECT * FROM test WHERE val=10;
QUERY PLAN

Seq Scan on test (cost=0.00..160.59 rows=37 width=16) (actual time=0.036..1.640 rows=18 loops=1)

Filter: (val = 10)
Rows Removed by Filter: 8900

Planning time: 0.163 ms
Execution time: 2.037 ms

(5 rows)

dataegret.com

Simplest B-tree indexing 26

=> create index CONCURRENTLY test_val_idx on test using btree (val);
CREATE INDEX

=> EXPLAIN ANALYZE SELECT * FROM test WHERE val=10;
QUERY PLAN

--
Bitmap Heap Scan on test (cost=4.42..41.22 rows=18 width=16) (actual time=0.041..0.062 rows=18 loops=1)

Recheck Cond: (val = 10)
Heap Blocks: exact=12
-> Bitmap Index Scan on test_val_idx (cost=0.00..4.42 rows=18 width=0)

(actual time=0.033..0.033 rows=18 loops=1)
Index Cond: (val = 10)

Planning time: 1.136 ms
Execution time: 0.240 ms

(7 rows)

dataegret.com

Sort 27

explain analyze select distinct f1 from test_ndistinct ;
QUERY PLAN

Unique (cost=1571431.43..1621431.49 rows=100000 width=4)

(actual time=4791.872..7551.150 rows=90020 loops=1)
-> Sort (cost=1571431.43..1596431.46 rows=10000012 width=4)

(actual time=4791.870..6893.413 rows=10000000 loops=1)
Sort Key: f1
Sort Method: external merge Disk: 101648kB
-> Seq Scan on test_ndistinct (cost=0.00..135314.12 rows=10000012 width=4)

(actual time=0.041..938.093 rows=10000000 loops=1)
Planning time: 0.099 ms
Execution time: 7714.701 ms

dataegret.com

HashAggregate 28

set work_mem = ’8MB’;
SET
explain analyze select distinct f1 from test_ndistinct ;

QUERY PLAN

HashAggregate (cost=160314.15..161314.15 rows=100000 width=4)

(actual time=2371.902..2391.415 rows=90020 loops=1)
Group Key: f1
-> Seq Scan on test_ndistinct (cost=0.00..135314.12 rows=10000012 width=4)

(actual time=0.093..871.619 rows=10000000 loops=1)
Planning time: 0.048 ms
Execution time: 2396.186 ms

dataegret.com

Optimizing long IN 29

1. SELECT * FROM test WHERE id<10000
1.2ms
2. SELECT * FROM test WHERE id<10000 AND val IN (a list from 1 to 10)
2.1ms
3. SELECT * FROM test WHERE id<10000 AND val IN (a list from 1 to 100)
6ms
4. SELECT * FROM test WHERE id<10000 AND val IN (a list from 1 to 1000)
38ms
5. SELECT * FROM test WHERE id<10000 AND val IN (a list from 1 to 10000)
380ms

dataegret.com

Optimizing long IN 30

explain analyze select * from test where id<10000 and val IN (1,...,100);
QUERY PLAN
--
Index Scan using test_pkey on test (cost=0.43..1666.85 rows=10
width=140) (actual time=0.448..5.602 rows=16 loops=1)
Index Cond: (id < 10000)
Filter: (val = ANY (’1,...,100’::integer[]))
Rows Removed by Filter: 9984

dataegret.com

Optimizing long IN 31

explain select count(*) from test JOIN (VALUES (1),...,(10)) AS
v(val) USING (val) where id<10000;
QUERY PLAN
--
Aggregate (cost=497.65..497.66 rows=1 width=0)
->
Hash Join

(cost=0.69..497.65 rows=1 width=0)
Hash Cond: (test.val = "*VALUES*".column1)
-> Index Scan using test_pkey on test (cost=0.43..461.22
rows=9645 width=4)
Index Cond: (id < 10000)
-> Hash (cost=0.12..0.12 rows=10 width=4)
-> Values Scan on "*VALUES*" (cost=0.00..0.12 rows=10
width=4)

dataegret.com

Optimizing long IN 32

1. SELECT * FROM test WHERE id<10000
1.2ms
2. JOIN (VALUES (1),...,(10))
1.6ms (was 2.1ms)
3. JOIN (VALUES (1),...,(100))
2ms (was 6ms)
4. JOIN (VALUES (1),...,(1000))
3.9ms (was 38ms)
5. JOIN (VALUES (1),...,(10000))
10ms (was 380ms)

dataegret.com

DISTINCT authors 33

EXPLAIN (analyze) SELECT DISTINCT author_id FROM blog_post;
QUERY PLAN

Unique (cost=0.42..32912.78 rows=1001 width=4) (actual time=0.019..347.327 rows=1001 loops=1)

-> Index Only Scan using u_bp_author_ctime on blog_post (cost=0.42..30412.72 rows=1000020 width=4)
(actual time=0.018..268.112 rows=1000000 loops=1)

Heap Fetches: 0
Planning time: 0.068 ms
Execution time: 347.495 ms

(5 rows)

dataegret.com

Alternative: Loose index scan 34

EXPLAIN (analyze) WITH RECURSIVE t AS (
-- start from least author_id -- anchor
(SELECT author_id AS _author_id FROM blog_post ORDER BY author_id LIMIT 1)
UNION ALL
-- find the next author_id > "current" author_id -- iterator
SELECT author_id AS _author_id

FROM t, LATERAL (SELECT author_id FROM blog_post WHERE author_id>t._author_id
ORDER BY author_id LIMIT 1) AS a_id

)
-- return found values
SELECT _author_id FROM t;

dataegret.com

Alternative: Loose index scan 35

QUERY PLAN

CTE Scan on t (cost=52.27..54.29 rows=101 width=4) (actual time=0.017..11.176 rows=1001 loops=1)

CTE t
-> Recursive Union (cost=0.42..52.27 rows=101 width=4) (actual time=0.016..10.154 rows=1001 loops=1)

-> Limit (cost=0.42..0.46 rows=1 width=4) (actual time=0.015..0.015 rows=1 loops=1)
-> Index Only Scan using u_bp_author_ctime on blog_post (cost=0.42..30412.72 rows=1000020 width=4)

(actual time=0.014..0.014 rows=1 loops=1)
Heap Fetches: 0

-> Nested Loop (cost=0.42..4.98 rows=10 width=4) (actual time=0.009..0.010 rows=1 loops=1001)
-> WorkTable Scan on t t_1 (cost=0.00..0.20 rows=10 width=4) (actual time=0.000..0.000 rows=1 loops=1001)
-> Limit (cost=0.42..0.46 rows=1 width=4) (actual time=0.009..0.009 rows=1 loops=1001)

-> Index Only Scan using u_bp_author_ctime on blog_post blog_post_1 (cost=0.42..10973.87 rows=333340 width=4)
(actual time=0.009..0.009 rows=1 loops=1001)

Index Cond: (author_id > t_1._author_id)
Heap Fetches: 0

Planning time: 0.143 ms
Execution time: 11.301 ms

(14 rows)

dataegret.com

Queries which cannot be optimized 36

• NOT IN (query) instead of EXISTS
• JOIN instead IN/EXISTS
• unordered LIMIT
• ORDER BY random()

• Avoid them!

dataegret.com

Queries which cannot be optimized 36

• NOT IN (query) instead of EXISTS
• JOIN instead IN/EXISTS
• unordered LIMIT
• ORDER BY random()
• Avoid them!

dataegret.com

Takeaways 37

• Do not optimize all the queries - start with most critical for your
production system

• Find your baseline
• Do not tune the query, try to figure out how to do what it does more
effectively!

dataegret.com

Questions? 38

ik@dataegret.com

dataegret.com

