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Agenda 2

1. What is a slow query?

2. How to chose queries to optimize?

3. What is a query plan?

4. Optimization tools

5. Optimization examples
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Is this query slow? 3

QUERY PLAN
----------------------------------------------------------------------------------------------
Limit (cost=12993.17..12993.17 rows=1 width=20) (actual time=606.385..606.385 rows=1 loops=1)
...
Planning time: 1.236 ms
Execution time: 607.057 ms
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Does this query perform well enough for your system? 4

• What is your baseline?
• 607.057 ms can be extremely fast for OLAP
• But 607.057 ms * 10000 parallel queries on OLTP?
• 607.057 ms on 10 y.o. SATA disks vs modern SSD
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How to find the queries to optimize? 5

• Often it is useless to optimize all queries

• log_min_duration_statement = 100ms
Everything that’s in the logs is due for review

• pg_stat_statements
Lot’s of useful stuff inside

• Monitoring system of choice
Hopefully it has query info accumulated and ranged
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How to find the queries to optimize? 6
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Which queries to optimize first? 7

SELECT sum(total_time) AS total_time,
sum(blk_read_time + blk_write_time) AS io_time,
sum(total_time - blk_read_time - blk_write_time) AS cpu_time,
sum(calls) AS ncalls,
sum(rows) AS total_rows

FROM pg_stat_statements
WHERE dbid IN (SELECT oid FROM pg_database WHERE datname=current_database())
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Which queries to optimize first? 8

WITH ttl AS (
SELECT sum(total_time) AS total_time, sum(blk_read_time + blk_write_time) AS io_time,

sum(total_time - blk_read_time - blk_write_time) AS cpu_time,
sum(calls) AS ncalls, sum(rows) AS total_rows

FROM pg_stat_statements WHERE dbid IN (
SELECT oid FROM pg_database WHERE datname=current_database())

)
SELECT *,(pss.total_time-pss.blk_read_time-pss.blk_write_time)/ttl.cpu_time*100 cpu_pct

FROM pg_stat_statements pss, ttl
WHERE (pss.total_time-pss.blk_read_time-pss.blk_write_time)/ttl.cpu_time >= 0.05
ORDER BY pss.total_time-pss.blk_read_time-pss.blk_write_time DESC LIMIT 1;
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Which queries to optimize first? 9

• Lot’s of metrics are possible to extract
• Requires time to come up with a good usable report
• DataEgret maintains it’s report in the public domain1

1https://github.com/dataegret/pg-utils/blob/master/sql/global_reports/query_stat_total.sql
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Details of the report 10

• Report operates with total_time, io_time and cpu_time, that is a difference
of the first two

• Report also normalizes queries and calculatesmd5 hash for faster
processing

• Main part of the report includes only those entries, that (any of the
conditions qualifies):

1. used more than 1% of total CPU or total IO time

2. returned more than 2% of all rows

3. had been called more than 2% of all query executions

• all other queries are combined into the other group
• report orders queries by total time spent, longest at the top
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Details of the report 11

total time: 19:59:57 (IO: 16.43%)
total queries: 200,609,344 (unique: 2,342)
report for all databases, version 0.9.5 @ PostgreSQL 9.6.3
tracking top 10000 queries, utilities off, logging 100ms+ queries
=============================================================================================================
pos:1 total time: 05:38:45 (28.2%, CPU: 30.9%, IO: 14.5%) calls: 84,592,220 (42.17%) avg_time: 0.24ms (IO: 8.3%)
user: all db: all rows: 198,391,036 (24.34%) query:
other
=============================================================================================================
pos:2 total time: 04:59:15 (24.9%, CPU: 24.0%, IO: 29.9%) calls: 5,610 (0.00%) avg_time: 3200.60ms (IO: 19.7%)
user: postgres db: --------- rows: 5,608,185 (0.69%) query:

WITH _deleted AS (DELETE FROM foos_2rm WHERE id IN (SELECT id FROM foos_2rm ORDER BY id LIMIT ?) RETURNING id)
DELETE FROM foos WHERE id IN (SELECT id FROM _deleted);
=============================================================================================================
pos:3 total time: 00:45:06 (3.8%, CPU: 2.3%, IO: 11.1%) calls: 853,864 (0.43%) avg_time: 3.17ms (IO: 48.6%)
user: ---------_background db: --------- rows: 164,706 (0.02%) query:
SELECT "foo_stats_master".* FROM "foo_stats_master" WHERE (foo_stats_master.created_at >= ?) AND (foo_stats_master.created_at < ?)
AND "foo_stats_master"."action" IN (?, ?, ?, ?) AND ("foo_stats_master"."foo_board_id" IS NOT NULL)
AND "foo_stats_master"."user_ip_inet" = ? AND "foo_stats_master"."employer_id" = ?
ORDER BY "foo_stats_master"."created_at" DESC LIMIT ?
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So, we identified some queries to optimize 12
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So, we identified some queries to optimize 12

What comes next?
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EXPLAIN 13

• Any query can be prepended with EXPLAIN to see it’s execution plan
• EXPLAIN SELECT * FROM pg_database;

QUERY PLAN
-----------------------------------------------------------
Seq Scan on pg_database (cost=0.00..0.16 rows=6 width=271)
(1 row)
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What is execution plan? 14

• Query goes through several stages in it’s lifecycle
• 1. Connection

2. Parser

3. Rewrite system

4. Planner / Optimizer

5. Executor↔ [Workers]
6. Send results

• Planner prepares a plan for executor
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What is execution plan? 15

• It is a tree
• Nodes and operations on them
• Planner uses statistics to chose the optimal plan
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Details of EXPLAIN 16

EXPLAIN SELECT * FROM pg_database;
QUERY PLAN

-----------------------------------------------------------
Seq Scan on pg_database (cost=0.00..0.16 rows=6 width=271)
(1 row)

Seq Scan type of node operation

on pg_database object of node operation

cost=0.00..0.16 cost of the node

rows=6 estimated rows

width=271 average width of a row
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Types of node operations 17

• Seq Scan— sequential scan of whole relation
• Parallel Seq Scan— parallel sequential scan of whole relation
• Index Scan— targeted random IO (read index + read table)

• Index Only Scan— read only from index2
• Bitmap Index Scan— prepare a map of rows to read from relation,
possibly combining maps from several indexes

• Bitmap Heap Scan— use map from Bitmap Index Scan and read rows
from relation, always follows Bitmap Index Scan

• CTE Scan - read from Common Table Expression (WITH Block)
• Function Scan - read results, returned by a function
2https://wiki.postgresql.org/wiki/Index-only_scans
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Cost of the node. Startup and total cost. 18

• A cost of fetching 8K block sequentially
• Cost is a relative value: a cost of 10 is 10× greater than a cost of 1

explain select * from posts order by id limit 5;
QUERY PLAN

--------------------------------------------------------------------------------------
Limit (cost=0.29..0.46 rows=5 width=28)

-> Index Scan using posts_pkey on posts (cost=0.29..347.29 rows=10000 width=28)
(2 rows)

• 0.29 + (347.29 - 0.29)*5/10000 = 0.4635
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rows×width 19

• Rows × width of a root node gives a clue of a result size in bytes
• Even if the query is fast, lots of it’s calls can cause a huge traffic between
database and an application

• Thats why SELECT∗ is not a good idea
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Operations on nodes 20

• join – joins data from two nodes using appropriate join method
• sort – various methods of sorting
• limit – cuts the dataset off
• aggregate – performs aggregation
• hash aggregate – groups data
• unique – removes duplicates from sorted datasets
• gather – gather data from different workers
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Options of EXPLAIN command 21

EXPLAIN [ ANALYZE ] [ VERBOSE ] statement
EXPLAIN [ ( option [, ...] ) ] statement

• ANALYZE executes statement and shows execution details
• VERBOSE verbose output
• COSTS show plan costs
• BUFFERS show information about buffers operated by the query
• TIMING show time spent
• SUMMARY show totals at the end of output
• FORMATTEXT |XML|JSON|YAML output in selected format
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Analyzing query 22

EXPLAIN (analyze) SELECT relname,relpages,reltuples FROM pg_class WHERE reltuples>10000;
QUERY PLAN

---------------------------------------------------------------------------------------------------
Seq Scan on pg_class (cost=0.00..5.55 rows=6 width=72) (actual time=0.069..0.073 rows=6 loops=1)

Filter: (reltuples > ’10000’::double precision)
Rows Removed by Filter: 334

Planning time: 0.102 ms
Execution time: 0.087 ms

(5 rows)

actual time=0.069..0.073 startup and total time of node execution

rows=6 actual rows

loops=1 number of times node had been executed

Rows Removed by Filter: 334 node processing details
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A bit more complex query 23

EXPLAIN (analyze, buffers) SELECT r.relname, a.attname FROM pg_class r JOIN pg_attribute a ON a.attrelid=r.oid
WHERE a.attnum>0 AND NOT attisdropped;

QUERY PLAN
----------------------------------------------------------------------------------------------------------------------
Hash Join (cost=8.95..66.58 rows=1770 width=128) (actual time=0.215..2.246 rows=2039 loops=1)

Hash Cond: (a.attrelid = r.oid)
Buffers: shared hit=59 read=2
I/O Timings: read=0.270
-> Seq Scan on pg_attribute a (cost=0.00..33.29 rows=1770 width=68) (actual time=0.009..1.148 rows=2039 loops=1)

Filter: ((NOT attisdropped) AND (attnum > 0))
Rows Removed by Filter: 587
Buffers: shared hit=46 read=2
I/O Timings: read=0.270

-> Hash (cost=4.70..4.70 rows=340 width=68) (actual time=0.198..0.198 rows=340 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 42kB
Buffers: shared hit=13
-> Seq Scan on pg_class r (cost=0.00..4.70 rows=340 width=68) (actual time=0.002..0.095 rows=340 loops=1)

Buffers: shared hit=13
Planning time: 0.202 ms
Execution time: 2.554 ms

(16 rows)
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Now we have all we need to optimize 24

• We know what we want in terms of performance
• We know what query to optimize
• We have all the tools (EXPLAIN ANALYZE)

• Now we only need to minimize the time executor spends on each node
• Or actually try to figure out what the query should do:
Never optimize a SQL-query itself, try to optimize the operation it
does

dataegret.com



Now we have all we need to optimize 24

• We know what we want in terms of performance
• We know what query to optimize
• We have all the tools (EXPLAIN ANALYZE)
• Now we only need to minimize the time executor spends on each node

• Or actually try to figure out what the query should do:
Never optimize a SQL-query itself, try to optimize the operation it
does

dataegret.com



Now we have all we need to optimize 24

• We know what we want in terms of performance
• We know what query to optimize
• We have all the tools (EXPLAIN ANALYZE)
• Now we only need to minimize the time executor spends on each node
• Or actually try to figure out what the query should do:
Never optimize a SQL-query itself, try to optimize the operation it
does

dataegret.com



Simplest B-tree indexing 25

EXPLAIN ANALYZE SELECT * FROM test WHERE val=10;
QUERY PLAN

---------------------------------------------------------------------------------------------------
Seq Scan on test (cost=0.00..160.59 rows=37 width=16) (actual time=0.036..1.640 rows=18 loops=1)

Filter: (val = 10)
Rows Removed by Filter: 8900

Planning time: 0.163 ms
Execution time: 2.037 ms

(5 rows)
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Simplest B-tree indexing 26

=> create index CONCURRENTLY test_val_idx on test using btree (val);
CREATE INDEX

=> EXPLAIN ANALYZE SELECT * FROM test WHERE val=10;
QUERY PLAN

----------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on test (cost=4.42..41.22 rows=18 width=16) (actual time=0.041..0.062 rows=18 loops=1)

Recheck Cond: (val = 10)
Heap Blocks: exact=12
-> Bitmap Index Scan on test_val_idx (cost=0.00..4.42 rows=18 width=0)

(actual time=0.033..0.033 rows=18 loops=1)
Index Cond: (val = 10)

Planning time: 1.136 ms
Execution time: 0.240 ms

(7 rows)
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Sort 27

explain analyze select distinct f1 from test_ndistinct ;
QUERY PLAN

-------------------------------------------------------------------------------------------
Unique (cost=1571431.43..1621431.49 rows=100000 width=4)

(actual time=4791.872..7551.150 rows=90020 loops=1)
-> Sort (cost=1571431.43..1596431.46 rows=10000012 width=4)

(actual time=4791.870..6893.413 rows=10000000 loops=1)
Sort Key: f1
Sort Method: external merge Disk: 101648kB
-> Seq Scan on test_ndistinct (cost=0.00..135314.12 rows=10000012 width=4)

(actual time=0.041..938.093 rows=10000000 loops=1)
Planning time: 0.099 ms
Execution time: 7714.701 ms
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HashAggregate 28

set work_mem = ’8MB’;
SET
explain analyze select distinct f1 from test_ndistinct ;

QUERY PLAN
-------------------------------------------------------------------------------------------
HashAggregate (cost=160314.15..161314.15 rows=100000 width=4)

(actual time=2371.902..2391.415 rows=90020 loops=1)
Group Key: f1
-> Seq Scan on test_ndistinct (cost=0.00..135314.12 rows=10000012 width=4)

(actual time=0.093..871.619 rows=10000000 loops=1)
Planning time: 0.048 ms
Execution time: 2396.186 ms
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Optimizing long IN 29

1. SELECT * FROM test WHERE id<10000
1.2ms
2. SELECT * FROM test WHERE id<10000 AND val IN (a list from 1 to 10)
2.1ms
3. SELECT * FROM test WHERE id<10000 AND val IN (a list from 1 to 100)
6ms
4. SELECT * FROM test WHERE id<10000 AND val IN (a list from 1 to 1000)
38ms
5. SELECT * FROM test WHERE id<10000 AND val IN (a list from 1 to 10000)
380ms
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Optimizing long IN 30

explain analyze select * from test where id<10000 and val IN (1,...,100);
QUERY PLAN
------------------------------------------------------------------------
Index Scan using test_pkey on test (cost=0.43..1666.85 rows=10
width=140) (actual time=0.448..5.602 rows=16 loops=1)
Index Cond: (id < 10000)
Filter: (val = ANY (’1,...,100’::integer[]))
Rows Removed by Filter: 9984
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Optimizing long IN 31

explain select count(*) from test JOIN (VALUES (1),...,(10)) AS
v(val) USING (val) where id<10000;
QUERY PLAN
------------------------------------------------------------------------
Aggregate (cost=497.65..497.66 rows=1 width=0)
->
Hash Join

(cost=0.69..497.65 rows=1 width=0)
Hash Cond: (test.val = "*VALUES*".column1)
-> Index Scan using test_pkey on test (cost=0.43..461.22
rows=9645 width=4)
Index Cond: (id < 10000)
-> Hash (cost=0.12..0.12 rows=10 width=4)
-> Values Scan on "*VALUES*" (cost=0.00..0.12 rows=10
width=4)
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Optimizing long IN 32

1. SELECT * FROM test WHERE id<10000
1.2ms
2. JOIN (VALUES (1),...,(10))
1.6ms (was 2.1ms)
3. JOIN (VALUES (1),...,(100))
2ms (was 6ms)
4. JOIN (VALUES (1),...,(1000))
3.9ms (was 38ms)
5. JOIN (VALUES (1),...,(10000))
10ms (was 380ms)
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DISTINCT authors 33

EXPLAIN (analyze) SELECT DISTINCT author_id FROM blog_post;
QUERY PLAN

---------------------------------------------------------------------------------------------------------------
Unique (cost=0.42..32912.78 rows=1001 width=4) (actual time=0.019..347.327 rows=1001 loops=1)

-> Index Only Scan using u_bp_author_ctime on blog_post (cost=0.42..30412.72 rows=1000020 width=4)
(actual time=0.018..268.112 rows=1000000 loops=1)

Heap Fetches: 0
Planning time: 0.068 ms
Execution time: 347.495 ms

(5 rows)

dataegret.com



Alternative: Loose index scan 34

EXPLAIN (analyze) WITH RECURSIVE t AS (
-- start from least author_id -- anchor
(SELECT author_id AS _author_id FROM blog_post ORDER BY author_id LIMIT 1)
UNION ALL
-- find the next author_id > "current" author_id -- iterator
SELECT author_id AS _author_id

FROM t, LATERAL (SELECT author_id FROM blog_post WHERE author_id>t._author_id
ORDER BY author_id LIMIT 1) AS a_id

)
-- return found values
SELECT _author_id FROM t;
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Alternative: Loose index scan 35

QUERY PLAN
---------------------------------------------------------------------------------------------------------------------
CTE Scan on t (cost=52.27..54.29 rows=101 width=4) (actual time=0.017..11.176 rows=1001 loops=1)

CTE t
-> Recursive Union (cost=0.42..52.27 rows=101 width=4) (actual time=0.016..10.154 rows=1001 loops=1)

-> Limit (cost=0.42..0.46 rows=1 width=4) (actual time=0.015..0.015 rows=1 loops=1)
-> Index Only Scan using u_bp_author_ctime on blog_post (cost=0.42..30412.72 rows=1000020 width=4)

(actual time=0.014..0.014 rows=1 loops=1)
Heap Fetches: 0

-> Nested Loop (cost=0.42..4.98 rows=10 width=4) (actual time=0.009..0.010 rows=1 loops=1001)
-> WorkTable Scan on t t_1 (cost=0.00..0.20 rows=10 width=4) (actual time=0.000..0.000 rows=1 loops=1001)
-> Limit (cost=0.42..0.46 rows=1 width=4) (actual time=0.009..0.009 rows=1 loops=1001)

-> Index Only Scan using u_bp_author_ctime on blog_post blog_post_1 (cost=0.42..10973.87 rows=333340 width=4)
(actual time=0.009..0.009 rows=1 loops=1001)

Index Cond: (author_id > t_1._author_id)
Heap Fetches: 0

Planning time: 0.143 ms
Execution time: 11.301 ms

(14 rows)
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Queries which cannot be optimized 36

• NOT IN (query) instead of EXISTS
• JOIN instead IN/EXISTS
• unordered LIMIT
• ORDER BY random()

• Avoid them!
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Takeaways 37

• Do not optimize all the queries - start with most critical for your
production system

• Find your baseline
• Do not tune the query, try to figure out how to do what it does more
effectively!
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Questions? 38

ik@dataegret.com
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