
YeSQL: Battling the NoSQL
Hype Cycle with Postgres

BRUCE MOMJIAN

This talk explores how new NoSQL technologies are unique, and
how existing relational database systems like Postgres are
adapting to handle NoSQL workloads.
Creative Commons Attribution License http://momjian.us/presentations

Last updated: May, 2016

1 / 17



Outline

1. Hype Cycle

2. History of relational challenges

3. NoSQL goals

4. Postgres adaptations

5. Future directions

2 / 17



1. Hype Cycle

http://en.wikipedia.org/wiki/Hype_cycle

3 / 17

http://en.wikipedia.org/wiki/Hype_cycle


2. History of Relational Challenges

◮ Object databases

◮ XML databases

4 / 17



3. NoSQL Goals

There is no single NoSQL technology. They all take different
approaches and have different features and drawbacks:

◮ Key-value stores, e.g. Redis

◮ Document databases, e.g. MongoDB (JSON)

◮ Columnar stores: Cassandra

◮ Graph databases: Neo4j

These are mostly aggregate-oriented — see Martin Fowler’s video
at https://www.youtube.com/watch?v=qI_g07C_Q5I.

5 / 17

https://www.youtube.com/watch?v=qI_g07C_Q5I


Why NoSQL Exists

Generally, NoSQL is optimized for:

◮ Fast simple queries

◮ Auto-sharding

◮ Flexible schemas

6 / 17



NoSQL Sacrifices

◮ A powerful query language

◮ A sophisticated query optimizer

◮ Data normalization

◮ Joins

◮ Referential integrity

◮ Durability

7 / 17



Are These Drawbacks Worth the Cost?

◮ Difficult Reporting Data must be brought to the client for
analysis, e.g. no aggregates or data analysis functions.
Schema-less data requires complex client-side knowledge for
processing

◮ Complex Application Design Without powerful query
language and query optimizer, the client software is
responsible for efficiently accessing data and for data
consistency

◮ Durability Administrators are responsible for data retention

8 / 17



When Should NoSQL Be Used?

◮ Massive write scaling is required, more than a single server
can provide

◮ Only simple data access pattern is required

◮ Additional resource allocation for development is acceptable

◮ Strong data retention or transactional guarantees are not
required

◮ Unstructured duplicate data that greatly benefits from
column compression

9 / 17



When Should Relational Storage Be Used?

◮ Easy administration

◮ Variable workloads and reporting

◮ Simplified application development

◮ Strong data retention

10 / 17



Postgres Adaptations

Postgres has many NoSQL features without the drawbacks:

◮ Schema-less data types, with sophisticated indexing support

◮ Transactional schema changes with rapid addition and
removal of columns

◮ Durability by default, but controllable per-table or
per-transaction

11 / 17



Schema-Less Data: JSON and JSONB

CREATE TABLE customer (id SERIAL, data JSONB);

INSERT INTO customer VALUES (DEFAULT, ’{"name" : "Bill", "age" : 21}’);

SELECT data->>’name’ FROM customer
WHERE data->>’age’ = ’21’;
?column?
----------

Bill

-- this lookup is indexable
SELECT data->>’name’ FROM customer
WHERE data @> ’{"age" : 21}’::jsonb;
?column?
----------
Bill

12 / 17



Incremental JSON Improvements

◮ 9.2 (2012): JSON data type (syntax checking)

◮ 9.3 (2013): JSON extraction and conversion functions

◮ 9.4 (2014): JSONB (binary JSON) and GIN index
improvements

◮ 9.5 (2016): JSONB generation and manipulation functions

JSONB matches or beats MongoDB in performance and storage
size, except for update operations, which are slower.

13 / 17



Easy Relational Schema Changes

ALTER TABLE customer ADD COLUMN status CHAR(1);
BEGIN WORK;
ALTER TABLE customer ADD COLUMN debt_limit NUMERIC(10,2);
ALTER TABLE customer ADD COLUMN creation_date TIMESTAMP WITH TIME ZONE;
ALTER TABLE customer RENAME TO cust;
COMMIT;

14 / 17



NoSQL Access via Foreign Data Wrappers

Foreign data wrappers (SQL MED) allow queries to read and write
data to foreign data sources. Foreign database support includes:

◮ Cassandra (columnar)

◮ CouchDB (document)

◮ MongoDB (document)

◮ Neo4j (graph)

◮ Redis (key-value)

The transfer of aggregates and sorts to foreign servers is not yet
implemented. Join transfer is implemented in Postgres 9.6.
http://www.postgresql.org/docs/current/static/ddl-foreign-data.html
http://wiki.postgresql.org/wiki/Foreign_data_wrappers

15 / 17

http://www.postgresql.org/docs/current/static/ddl-foreign-data.html
http://wiki.postgresql.org/wiki/Foreign_data_wrappers


Future Directions

◮ Parallelism

◮ Auto-sharding using foreign data wrappers and parallelism

16 / 17



Conclusion

http://momjian.us/presentations http://flickr.com/photos/vpickering/3617513255

17 / 17


