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1. Hype Cycle

http://en.wikipedia.org/wiki/Hype_cycle
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2. History of Relational Challenges

◮ Object databases

◮ XML databases
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3. NoSQL Goals

There is no single NoSQL technology. They all take different
approaches and have different features and drawbacks:

◮ Key-value stores, e.g. Redis

◮ Document databases, e.g. MongoDB (JSON)

◮ Columnar stores: Cassandra

◮ Graph databases: Neo4j

These are mostly aggregate-oriented — see Martin Fowler’s video
at https://www.youtube.com/watch?v=qI_g07C_Q5I.
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Why NoSQL Exists

Generally, NoSQL is optimized for:

◮ Fast simple queries

◮ Auto-sharding

◮ Flexible schemas
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NoSQL Sacrifices

◮ A powerful query language

◮ A sophisticated query optimizer

◮ Data normalization

◮ Joins

◮ Referential integrity

◮ Durability
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Are These Drawbacks Worth the Cost?

◮ Difficult Reporting Data must be brought to the client for
analysis, e.g. no aggregates or data analysis functions.
Schema-less data requires complex client-side knowledge for
processing

◮ Complex Application Design Without powerful query
language and query optimizer, the client software is
responsible for efficiently accessing data and for data
consistency

◮ Durability Administrators are responsible for data retention
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When Should NoSQL Be Used?

◮ Massive write scaling is required, more than a single server
can provide

◮ Only simple data access pattern is required

◮ Additional resource allocation for development is acceptable

◮ Strong data retention or transactional guarantees are not
required

◮ Unstructured duplicate data that greatly benefits from
column compression
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When Should Relational Storage Be Used?

◮ Easy administration

◮ Variable workloads and reporting

◮ Simplified application development

◮ Strong data retention
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Postgres Adaptations

Postgres has many NoSQL features without the drawbacks:

◮ Schema-less data types, with sophisticated indexing support

◮ Transactional schema changes with rapid addition and
removal of columns

◮ Durability by default, but controllable per-table or
per-transaction
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Schema-Less Data: JSON and JSONB

CREATE TABLE customer (id SERIAL, data JSONB);

INSERT INTO customer VALUES (DEFAULT, ’{"name" : "Bill", "age" : 21}’);

SELECT data->>’name’ FROM customer
WHERE data->>’age’ = ’21’;
?column?
----------

Bill

-- this lookup is indexable
SELECT data->>’name’ FROM customer
WHERE data @> ’{"age" : 21}’::jsonb;
?column?
----------
Bill
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Incremental JSON Improvements

◮ 9.2 (2012): JSON data type (syntax checking)

◮ 9.3 (2013): JSON extraction and conversion functions

◮ 9.4 (2014): JSONB (binary JSON) and GIN index
improvements

◮ 9.5 (2016): JSONB generation and manipulation functions

JSONB matches or beats MongoDB in performance and storage
size, except for update operations, which are slower.
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Easy Relational Schema Changes

ALTER TABLE customer ADD COLUMN status CHAR(1);
BEGIN WORK;
ALTER TABLE customer ADD COLUMN debt_limit NUMERIC(10,2);
ALTER TABLE customer ADD COLUMN creation_date TIMESTAMP WITH TIME ZONE;
ALTER TABLE customer RENAME TO cust;
COMMIT;

14 / 17



NoSQL Access via Foreign Data Wrappers

Foreign data wrappers (SQL MED) allow queries to read and write
data to foreign data sources. Foreign database support includes:

◮ Cassandra (columnar)

◮ CouchDB (document)

◮ MongoDB (document)

◮ Neo4j (graph)

◮ Redis (key-value)

The transfer of aggregates and sorts to foreign servers is not yet
implemented. Join transfer is implemented in Postgres 9.6.
http://www.postgresql.org/docs/current/static/ddl-foreign-data.html
http://wiki.postgresql.org/wiki/Foreign_data_wrappers
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Future Directions

◮ Parallelism

◮ Auto-sharding using foreign data wrappers and parallelism

16 / 17



Conclusion

http://momjian.us/presentations http://flickr.com/photos/vpickering/3617513255
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