
Migrations to PostgreSQL

(from Oracle)

I am : Venkata B Nagothi

A PostgreSQL consultant for the past 6+ years

• Cost-effective and feature-rich open-source database

• PostgreSQL Community

• Integration capabilities

• Can replace any commercial database

• Cloud adoption

Why migrate to PostgreSQL ?

Migration process - overview

Preliminary
Migration Analysis

Perform
Migration

Functionality
Testing

Performance
Testing

Application Environment Database Environment

Evaluate Database
Infrastructure

Schema

Data

Evaluate Application
Source Code

Application
Architecture

Preliminary Migration Analysis

Major roadblocks for migration
• Heavy PL/SQL usage

• Heavy usage of Large Objects

• Propriety application with its own schema

• Application compatibility issues

• No application source code

Evaluate database migration effort
• Amount of manual migration effort needed

Evaluate application migration effort
• This is critical as the Application code is change is mostly manual

Preliminary Migration Analysis

Database Design / Architecture challenges

High Availability challenges

Development Challenges

Data Migration challenges

Migration challenges

Database Design / Architectural challenges

Redo Log Files (Multiplexing)

Database Design / Architecture

Transaction Log Files

WAL Files (No Multiplexing)

$PGDATA/pg_xlog

00000001000000010000007B
000000010000000100000077
000000010000000100000078
000000010000000100000072
000000010000000100000079

redo1a redo2a

redo1b redo2b/disk2

/disk1

• Database will hang if
the pg_xlog Disk
space is full

• Each WAL file size is
16 MB

• No multiplexing

• No hard limit on the
number of files

• I/O balancing is
needed

Oracle PostgreSQL

Group 1 Group 2

Database Design / Architecture

Archived Log files

Redo Log Files WAL Files
$PGDATA/pg_xlog

00000001000000010000007B (16
MB)
000000010000000100000077 (16
MB)

Oracle PostgreSQL

000000010000000100000077 (16 MB)

WAL Archived File

Group 1

redo_100.arc (1 MB)

Archived Log File

500 MBredo 1a

Compression
needed

Database Design / Architecture

Data files

Oracle PostgreSQL

Data Files Data Files
(directory)

/disk1/datafile1

/disk2/datafile2

/disk3/datafile3

/disk4/datafile4

13157_fsm 13172_fsm 13189
13157_vm 13172_vm 13191
13159 13174 1417
13161 13176 1417_vm
13162 13177 1418

• Storage is Directory
Bound

• Data files are auto
generated

• DBA has no control
over data file
management

RAID

Database Design / Architecture

Data File structure

Oracle PostgreSQL

Tablespace Tablespace-1

/disk1/datafile1

/disk2/datafile2

/disk3/datafile3

/disk4/datafile4

/disk1/tbs01

Table-1

Table-1, Table-2

10GB

10GB

10GB

10GB

Tablespace

Table-1

30GB

Tablespace-2

/disk2/tbs02

Table-2

10GB

Table-2

Table-1 = 30 GB
Table-2 = 10 GB

/disk1

/disk2

/disk3

/disk4

/data/tbs
(OR)

I/O Balancing is a
challenge

Database Design / Architecture

pg_control file (No Multiplexing)

$PGDATA/global/pg_control

Control File

Control File (Multiplexing)

/disk1/oradata/control01.ctl
/disk2/oradata/control02.ctl

Oracle PostgreSQL • Loosing
pg_control file
will result in
incomplete
recovery

Database Design / Architecture

bg-writer

Oracle

Database Buffer Cache

DBWR 1 DBWR 2 DBWR 3

PostgreSQL

Shared Buffers

bg writer

Data files Data files

It would be good to have
multiple bg-writers for
better write performance
and scalability in an high-
transaction multi-CPU
environment

High Availability challenges

High Availability

Oracle
Dataguard

PostgreSQL
Streaming Replication

Migration Impact (Streaming Replication)

• More simpler to implement

• Supports all the protection modes in Oracle

• Supports cascading replication with some limitations

High Availability

Role reversal (for disaster recovery) – Limitations in PostgreSQL

Master
Standby

(new master)

Streaming Replication

Standby can be
promoted to
Standalone

after the master
is shutdown

Limitation
Role reversal cannot be
performed without an
Outage to the master.

Old master can
be made standby.

High Availability

PostgreSQL Streaming Replication – Limitations

 Standby can be built on a different filesystem using pg_basebackup

v

Master

Streaming Replication

Standby

/data/tbs01

/data/tbs02

/data/tbs03

/disk2/tbs01

/disk2/tbs02

/disk2/tbs03

Create Tablespace..
Location “/data/tbs04”…

Development challenges

(database)

ora2pg is the most open-source tool used for migrating the Oracle database to
PostgreSQL.

Database migration time and cost can be evaluated by identifying the manual
migration effort needed

Database migration can be in three phases

Schema migration

PL/SQL migration

Data migration

ora2pg

Database migration

Most of the Schema migration can be done automatically using ora2pg.

 The Oracle database objects not supported by PostgreSQL must be identified and
must be migrated manually.

Schema Migration

Database migration

Unsupported Object PostgreSQL Alternative solution

Materialized Views Auto refresh and query re-writing is not supported

Index-Organized-Tables This requirement can be partially fulfilled by Clustering a Table.

Public Synonyms Public Synonyms are not supported in PostgreSQL. “search_path” can be used as an alternative

Global Temporary Tables There is no support for Global Temporary Tables. Unlogged Tables can be used instead.

Partitioned tables Partitioned Tables in PostgreSQL are not quite similar to Oracle style partitioning and cannot be
used as an alternative.

• Child tables are more like individual tables
• Constraints are not inherited to child tables
• No support for Global and Local indexes

Database migration

Schema Migration

Ora2pg partially migrated PL/SQL objects

As PostgreSQL does not support objects like Packages, most of the PL/SQL objects
must be migrated manually

PL/SQL Migration

Database migration

Unsupported PL/SQL
Object

Alternative PostgreSQL Solution

Packages Packages are unsupported in PostgreSQL.

DBMS* Packages Some of the DBMS packages are supported by orafce external contrib
module. The unsupported packages cannot be migrated. A custom
function must be built if required.

PACKAGES PostgreSQL Alternative

PACKAGE DEFINITION SCHEMA must be used as an alternative
for Package definitions

GLOBAL VARIABLES TEMP TABLES must be used as an
alternative for GLOBAL VARIABLES

PACKAGE BODY Package Body must be converted to
FUNCTION(S)

• Application functionality testing is
critical and can poses challenges

• Reaching the expected Performance
benchmark can be a challenge too.

• There could be a need to re-write the
whole business logic to full fill the
application requirements.

Database migration

PL/SQL Migration

Database migration

PL/SQL Cursors

PostgreSQL Cursors Limitations

ROWCOUNT attribute is not supported MOVE LAST must be used to fetch the count of the rows in
a cursor. This could be a significant performance penalty
when cursor has millions of rows.

Cursor position

1
2
3
4
5 <- Current cursor position
.
.
.
.
.
1 billion <- MOVE ALL

Cursor position must be moved to last row of the
cursor to fetch the count.

PostgreSQL is rich in data-type

Data migration can be performed using Ora2pg which is very efficient

However, significant challenges can be encountered while migrating Large
objects and JSON data

Data Migration

Database migration

BLOB

BYTEA
(1 GB LIMIT)

LO

Migration Large Objects

Database migration

Oracle
BLOB

PostgreSQL
BYTEA

(max limit 1 GB)
Ora2pg (automatic)

Migration Impact

• Oracle BLOBs are automatically migrated to PostgreSQL bytea by ora2pg

• BYTEA cannot be streamed. This can lead to unstable Application performance
which would have a negative impact on the benchmarking metrics

• Can accommodate more than 1 GB due to PostgreSQL compression algorithm

• Triggers an Application code change

• BYTEA into the memory at a time which will impose performance problems resulting
in excessive usage of Memory and Network bandwidth

BYTEA
Column

Size

Text File 10K

Text File 10K

Image 20M

Image 300M

Text file 100K

Migrating Large Objects

Database migration

Oracle
BLOB

PostgreSQL
LOManual

Migration Impact

• LO objects can be streamed in multiple chunks resulting in effective
performance

• Custom ETL scripts must be built

• Migration effort and time can be a challenge

• Application code change is expected

• Application functionality and Performance testing

Migration Large Objects

Database migration

 pg_largeobjects is used to store the large objects in PostgreSQL

 There is a serious limitation around this.

All the Large objects of all the tables in the database are stored in a
single table called pg_largeobjects. This can turn out to be a serious
design flaw and can be a significant performance bottleneck.

Pg_largeobjects - Limitation

Database migration

LO

OID

LO

OID

OID

pg_largeobjects

Generally, Oracle uses BLOB or CLOB to store JSON data

 Technically, JSON is treated as a Large object

As PostgreSQL’s support towards JSON is powerful and efficient,
JSON data can be migrated to PostgreSQL’s JSON/JSONB data types

Unfortunately, this is a manual and time consuming process.
Significant application code change is also required.

Database migration

Migrating JSON Data

{ ID: 001, Name:”VBN” }

BLOB CLOB

Oracle

Oracle
BLOB with JSON data

PostgreSQL
JSONBManual

Migration Impact

• BLOB migration to JSONB cannot be done directly and no ETL can make this
possible

• Can result in an heavy Application design and code change

• Migration effort and time can be a challenge

• Heavy development can be on the cards

SELECT UTL_RAW.CAST_TO_VARCHAR2 select col->>‘value' FROM table;

Database migration

Migrating JSON Data

Oracle
CLOB with JSON data

PostgreSQL
TEXTAUTOMATIC (Ora2pg)

Migration Impact

• Can result in an heavy Application design and code change

• Migration effort and time can be a challenge

PostgreSQL
JSONB

Manual

Database migration

Migrating JSON Data

Development challenges

(Migrating Oracle SQLs for Application)

SQLs Migration for application

Application migration is the most critical and challenge episode of
whole migration project

Migration SQLs in the Application source code is very critical and can
take up majority of the migration time.

Application source code must be analysed to identify the SQLs that
needs to be changed which is not an straight forward way
unfortunately.

A single SQL syntax change can trigger a change at hundreds of
places in the application source code files

Oracle PostgreSQL

CONNECT BY
START WITH
SYS_CONNECT_BY_PATH
CONNECT_BY_ROOT

• WITH RECURSIVE is a straight alternative for migrating
Hierarchical queries

• Depending on the complexity of the query logic, connectby()
function part of tablefunc contrib module can be of use

• pl-pgsql functions is another alternative if the Hierarchical
queries cannot be converted using WITH RECURSIVE alone

Hierarchical queries

SQLs Migration for application

Oracle JDBC Driver
PostgreSQL
JDBC Driver

Migration Impact

AUTOCOMMIT OFF

• Application behaviour is different in autocommit off mode
• Multiple transactions will be automatically part of a transaction block, which means COMMIT ALL or

NONE
• Heavy application code change may be required
• Functionality testing
• Performance testing
• Changing legacy code might impose further more challenges

SQLs Migration for application

 Implicit type casting can be highly beneficial and can help reduced the need
to change the application code to a greater extent

 Increases the possibility usage of Indexes

 Avoids the need to create function-based Indexes

Table PostgreSQL

select * from table where col1::int > 2;

create cast(varchar as integer) with inout as implicit;

select * from table where col1 > 2;

Oracle

select * from table where col1 > 2;

varchar varchar

2 Sydney

3 London

4 Singapore

3 London

4 Singapore

3 London

4 Singapore

SQLs Migration for application

Questions ?

