NTT (O)

Copyright(c)2017 NTT Corp. All Rights Reserved.

S

Innova tive R&D by NTT

PostgreSQL Built-in Sharding:

Enabling Big Data Management with the Blue Elephant

E. Fujita, K. Horiguchi, M. Sawada, and A. Langote
NTT Open Source Software Center

Copyright©2017 NTT Corp. All Rights Reserved.

Who Are We? s

Kyotaro Horiguchi Amit Langote

Etsuro Fujita Masahiko Sawada
® NTT Copyright©2017 NTT Corp. All Rights Reserved. 2

u
Outline :
Innovative R&D by NTT

- Database Sharding

« Built-in Sharding for PostgreSQL

« Core Features for Built-in Sharding
- Demonstrations

« Concluding Remarks

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

3

Database Sharding .

« A technique to scale out databases
« Spreads data across multiple shards

« Allows high read/write scaling in environments that
have very large data sets

Application

1 1 1 1 1 1

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 4

Sharding at the Application Layer

« Common practice to scale out PostgreSQL

 Problems:

« Need to write application logic to manage shards
» Distributed transaction is cumbersome
« Distributed join/aggregation is cumbersome

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

5

Sharding at the Database Layer

- PostgreSQL external projects offer
transparent sharding at the database layer:
« Postgres-XC
« Postgres-XL
« Postgres Pro
- Citus DB

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

6

Posgres-XC: Overview

 Developed by NTT and EnterpriseDB
(completed in 2014)

- Declarative table partitioning

 SQL-based remote database access

* Distributed transaction support
 Distributed join/aggregation support

« Cluster management

« Postgres-XL is a successor to Postgres-XC

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

7/

Posgres-XC: Architechture .

T
Client machines a g

v

7

Global transaction manager:
- Issues transaction IDs/snapshots for MVCC

i |
| Coordinator nodes:

4
N

- Fetches required data by issuing
remote queries to the data nodes
- Manages two-phase commit

A
v

’
7’
7’
AY
AY
AY
\‘

Data nodes:

- Stores the actual data

- Handles requests from the coordinator nodes
- Returns results to the coordinator nodes

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 8

Lessons Learned from Postges-XC

- Good
* Provides cutting-edge technologies for sharding
* Not good
 Difficult to maintain stable quality with limited
resources

 Difficult to date with the PostgreSQL source code with
limited resources

- What we believe is
« Built-in sharding for PostgreSQL is the right way to go

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 9

Outline <

- Database Sharding

« Built-in Sharding for PostgreSQL

- Core Features for Built-in Sharding
- Demonstrations

 Concluding Remarks

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

10

Building blocks for built-in sharding

 What we have achieved as of PostgreSQL 10

« Declarative table partitioning
« Added in PostgreSQL 10
« Spreads data into partitions across multiple shards
« Don’t need cumbersome setting for that anymore
« Opens the way to many kinds of optimizations
« SQL-based remote database access
* Provided by Foreign Data Wrapper (FDW)

« Pushes database operations down to shards

« Join pushdown in PostgreSQL 9.6
« Aggregation pushdown in PostgreSQL 10

- What we are planning to achieve
 Distributed transaction support
« Smart query planning/execution

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 1 1

Built-in Sharding for PostgreSQL

 Basic architecture

2
HY 4
b

Coordinator

Partitioned
Table

postgres_fdw

?

Remote
Table

Shard

’ Remote ? Remote
'I Table t| Table
Shard Shard

Copyright©2017 NTT Corp. All Rights Reserved. 1 2

Towards OLTP/OLAP on built-in sharding:..

* Missing pieces
« OLTP: Distributed transaction support
« Extend transaction manager to support atomic
commit/visibility
« OLAP: Smart query planning/execution

« Make planner more partitioning-aware
« Distributed join/aggregation support
« Integrate with logical replication
« Improve executor to achieve parallelism on shards

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 1 3

Extend Transaction Manager

« Atomic commit
« Keeps transaction atomicity across shards

Client

Coordinator

Remote
Table

Shard

Partitioned
Table

Remote
'I Table

Remote
Table
Shard Shard

®) NTT

Copyright©2017 NTT Corp. All Rights Reserved. 1 4

Make Planner More Partitioning-Aware ..

« 1. Partition-wise join
« Reduces cross-shard computation

Client

‘ SELECT .. FROM P1 JOIN P2

Coordinator

APPEND Partitioned

Remote Remote

Table

Shard Shard Shard
® NII Copyright©2017 NTT Corp. All Rights Reserved. 1 5

Make Planner More Partitioning-Aware ..

« 2. Partition-wise aggregation
« Reduces cross-shard computation

\ SELECT count(*) FROM P1 Client

Coordinator

al A artitioned
E Table

artial AGG Gl
Table
S)]

Shard Shard Shard
® NII Copyright©2017 NTT Corp. All Rights Reserved. 1 6

Our Roadmap

 PostgreSQL 11

« (OLTP) Atomic commit

« (OLAP) Partition-wise join/aggregation
 PostgreSQL 12+

« (OLTP) Atomic visibility

« (OLAP) Parallelism on shards

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 1 7

Outline <

- Database Sharding

« Built-in Sharding for PostgreSQL

« Core Features for Built-in Sharding
- Demonstrations

 Concluding Remarks

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

18

Progress up to PostgreSQL 10

 PostgreSQL 9.3

« Writable foreign tables

<PG9.3

Data for “foo” from client

| ©@ |

Foreign table
“fooﬂ

Queries
only

postgres_fcw

Table “foo”

.

Data for “foo” from client

N

Innovative R&D by NTT

PG 9.3~

Data for “foo” from client

L]

Foreign table
(ifooﬂ

2z
Queries 2
& 5
writes g

Table “foo”

P

Data for “foo” from client

Copyright©2017 NTT Corp. All Rights Reserved. 1 9

N

Progress up to PostgreSQL 10

 PostgreSQL 9.3
« WHERE condition pushdown, etc.

<PG 9.3 PG 9.3~
SELECT * SELECT *
FROM foo FROM foo
WHERE a = 1 WHERE a = 1

L l

Foreign table
“fooﬂ

Foreign table
“fooﬂ

x * k>
SELECT * 1% SELECT 5
FROM foo |5 FROM foo 2
- WHEREa=1 J &

Table “foo” Table “foo”

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

Innovative R&D by NTT

Progress up to PostgreSQL 10 b

 PostgreSQL 9.5

 Foreign table inheritance as one of the first pieces of
infrastructure to implement built-in sharding

SELECT *
FROM foo Table “foo”
WHERE a =1
Foreign Foreign Foreign
Table “foo_part1” Table “foo_part1” Table “foo_part1”
1<=a<10 10 <=a <20 20=<=a <30

FROM foo_part1
WHERE a =1

postgres_fdw

Table “foo_part1”

postgres_fdw

Table “foo_part2”

postgres_fdw

Table “foo_part3”

Copyright©2017 NTT Corp. All Rights Reserved. 2 1

Progress up to PostgreSQL 10

 PostgreSQL 9.6

« Sort pushdown to get data in desired order from the
remote server

<PG 9.6 PG 9.6~
SELECT * SELECT *
FROM foo FROM foo
WHERE a = 1 WHERE a =1
ORDER BY 3; ORDER BY a
Foreign table Foreign table
Hfooﬂ (lfool!

SELECT * z SELECT 3
a FROM foo o
FROM foo o _ o
WHERE o =1 | £ WHERE a = 1 5
as R ORDER BY a g

Table “foo” Table “foo”

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 22

Progress up to PostgreSQL 10

 PostgreSQL 9.6

N

« Join pushdown to remotely join tables known to be on the

same remote server

<PG9.6

SELECT *
FROM foo, bar
WHERE foo.a = bar.a

i

Foreign table >4 Foreign table
“fool! Hbar!!

=
SELECT* || SELECT*
FROM foo 2| FROM bar
Table “foo” Table “bar”

PG 9.6~

SELECT *
FROM foo, bar
WHERE foo.a = bar.a

l

Foreign table Foreign table
“foo” “bar”

SELECT *
FROM foo, bar
WHERE foo.a = bar.a

postgres_fdw

Table “foo” X Table “bar”

Copyright©2017 NTT Corp. All Rights Reserved. 2 3

Progress up to PostgreSQL 10

« PostgreSQL 10
 Declarative table partitioning where individual partitions
can be foreign tables

SELECT Table “foo”
FROM foo Partition key: a
WHERE a = 1 ‘
Foreign Foreign Foreign
Table “foo_part1” Table “foo_part1” Table “foo_part1”
1<=a<10 10<=a <20 20<=a <30

SELECT *
FROM foo_part1
WHERE a =1

postgres_fdw

postgres_fdw
postgres_fdw

Table “foo_part1” Table “foo_part2” Table “foo_part3”

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 24

Progress up to PostgreSQL 10

« PostgreSQL 10

- Aggregate pushdown to perform grouped or non-grouped
aggregates on the remote server

<PG10

SELECT a, count(*)
FROM foo
GROUP BY g;

l

Foreign table
(ifool!

SELECT *
FROM foo

postgres_ fdw

Table “foo”

PG 10~

SELECT a, count(*)
FROM foo
GROUP BY a;

l

Foreign table
“fOOH

SELECT a, count(*)
FROM foo
GROUP BY a;

postgres_fdw

Table “foo”

Copyright©2017 NTT Corp. All Rights Reserved. 2 5

New In PostgreSQL 11

- Basic features
« Hash partitioning
« Tuple routing for foreign partitions
- Distributed join/aggregation support
« Partition-wise join/aggregation
* Distributed transaction support
« Atomic commit

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 26

Hash Partitioning

« Each partition is created by specifying a modulus and a

remainder

« The data is uniformly distributed across all partitions

CREATE

CREATE

CREATE

CREATE

CREATE

TABLE blogs (id int, title
PARTITION BY (id);

TABLE blogs_1 PARTITION OF
FOR VALUES WITH
TABLE blogs_ 2 PARTITION OF
FOR VALUES WITH
TABLE blogs_3 PARTITION OF
FOR VALUES WITH
TABLE blogs_4 PARTITION OF
FOR VALUES WITH

text, contents text)

blogs
blogs
blogs

blogs

Copyright©2017 NTT Corp. All Rights Reserved. 2 7

Partition-wise Join/Aggregation

N
« A join between partitioned tables to be performed by
joining the matching partitions

« In built-in sharding, joins are executed on each shard
servers

[Join] The old way [A Partition-wise join
ppend
4[Append] 4[Join
Scan)rScan\
Scan | Scan |
Scan ‘_———{ Join J \
————{Append: Scan

Scan

Scan

Scan ,
Scan

Scan |
Scan :]

Scan
® NTT Copyright©2017 NTT Corp. All Rights Reserved. 28

Atomic Commit

[
e Distributed transaction is either committed/aborted on ALL
remote servers

« In the ongoing patch, we employ two-phase commit protocol to
achieve atomic commit

SET category = ‘Music’

UPDATE blogs
WHERE category = ‘Movies’ and id = ‘ABC123’

Q. What happen
Table if one shard
crashes during
commit?
Table Table
‘Travels’, “‘Movies’ ‘Music’, ‘Sports’

@ NTT Copyright©2017 NTT Corp. All Rights Reserved. 29

Outline L

- Database Sharding

« Built-in Sharding for PostgreSQL

- Core Features for Built-in Sharding
- Demonstrations

« Concluding Remarks

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 30

Demo: Schema

| D

« Two tables to store user action data on a travel-related
application
Column highlighted in green is the partition/shard key

Table “flight_bookings”

id integer
user_id integer
booked_at timestamp without time zone

Table “hotel_bookings”

from_city text

from_continent text id

integer
to_city text user_id integer
to_continent text booked_at timestamp without time zone
city_name Text
continent text
flight_id integer REFERENCES flight_bookings (id)

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 3 1

Demo: Data Layout

« 4 partitions of each table

« Since both tables are partitioned on the column containing
same set of data in each table, corresponding tables on a
given shard contain matching data in that column

flight
boydngs

hotel
bookings

=

_—

/

—

flight
bookings

hotel
bookings

flight hotel flight hotel flight hotel

bookings| |bookings| | |[bookings| |bookings| | ||bookings| [bookings
Asia, Europe, North America
Oceania Africa

®) NTT

Copyright©2017 NTT Corp. All Rights Reserved. 3 2

South and Central
America

Demo: Atomic Commit

« Transaction initiated by a user action to change the hotel booking
for a given flight from ‘Mumbai’ to ‘Moscow".
« Causes the record to move from ‘Asia’ shard to ‘Europe’ shard
« During commit phase, the ‘Asia’ shard fails
« Whole transaction is aborted, so no data change occurs [

2. BEGIN =# SELECT * FROM hotel_bookings WHERE user_id = 1892;
3. Move record hotel i | user_id | city_name | continent | flight_id
4. COMMIT bookings """ Fommmmm- - Fo-mmmmmm e mmmmmmmmm- LECEELE LR
7318 | 1892 | Mumbai | Asia
(1 row)
N\
DELETE INSERT
y4 N
/ — N\
1. Enable
system error pote hotel hotel hotel
.y : bookings bookings bookings bookings
simulation
Asia,. EUTC_JDG, North America South and_CentraI
Oceania Africa America

D

Copyright©2017 NTT Corp. All Rights Reserved. 3 3

Demo: OLAP Query

* Query to get per-continent count of flights that have a
hotel booking associated with it

SELECT
FROM
WHERE

GROUP BY

F.
flight bookings F,

F

to_continent, count(*)

.to _continent = H.continent AND
F.id = H.flight _id AND
F.

F.to _continent;

booked at > ‘2017-10-01"

hotel bookings H

Copyright©2017 NTT Corp. All Rights Reserved. 34

Outline 4

- Database Sharding

« Built-in Sharding for PostgreSQL

- Core Features for Built-in Sharding
- Demonstrations

« Concluding Remarks

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 3 5

Concluding Remarks

* Built-in sharding
« Towards OLTP/OLAP on built-in sharding
« PostgreSQL 11
« (OLTP) Atomic commit
« (OLAP) Partition-wise join/aggregation
« PostgreSQL 12+
« (OLTP) Atomic visibility
« (OLAP) Parallelism on shards
« Remaining work
« Logical replication integration
« Orchestration
« Monitoring
« High availability

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 36

References

 R. Haas: From FDWs to Sharding, PGCon 2015

« S. Riggs: Logical Replication, Sharding & Multimaster
Clusters, PGConf.ASIA 2016

« M. Sawada: Built-in Sharding update and future,
PGConf.Russia 2017

« A. Langote, E. Fujita, K. Horiguchi, and M. Sawada:
Towards Built-in Sharding in Community PostgreSQL,
PGCon 2017

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 37

Thank You

« Any questions?

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 38

