
Copyright©2017 NTT Corp. All Rights Reserved.

PostgreSQL Built-in Sharding:
Enabling Big Data Management with the Blue Elephant

E. Fujita, K. Horiguchi, M. Sawada, and A. Langote
NTT Open Source Software Center

Copyright(c)2017 NTT Corp. All Rights Reserved.

2 Copyright©2017 NTT Corp. All Rights Reserved.

Who Are We?

Etsuro Fujita

Kyotaro Horiguchi

Masahiko Sawada

Amit Langote

3 Copyright©2017 NTT Corp. All Rights Reserved.

• Database Sharding

• Built-in Sharding for PostgreSQL

• Core Features for Built-in Sharding

• Demonstrations

• Concluding Remarks

Outline

4 Copyright©2017 NTT Corp. All Rights Reserved.

• A technique to scale out databases

• Spreads data across multiple shards

• Allows high read/write scaling in environments that
have very large data sets

Database Sharding

Application

Shard Shard Shard

5 Copyright©2017 NTT Corp. All Rights Reserved.

• Common practice to scale out PostgreSQL

• Problems:

• Need to write application logic to manage shards

• Distributed transaction is cumbersome

• Distributed join/aggregation is cumbersome

Sharding at the Application Layer

6 Copyright©2017 NTT Corp. All Rights Reserved.

• PostgreSQL external projects offer
transparent sharding at the database layer:

• Postgres-XC

• Postgres-XL

• Postgres Pro

• Citus DB

Sharding at the Database Layer

7 Copyright©2017 NTT Corp. All Rights Reserved.

• Developed by NTT and EnterpriseDB
(completed in 2014)

• Declarative table partitioning

• SQL-based remote database access

• Distributed transaction support

• Distributed join/aggregation support

• Cluster management

• Postgres-XL is a successor to Postgres-XC

Posgres-XC: Overview

8 Copyright©2017 NTT Corp. All Rights Reserved.

Posgres-XC: Architechture

Data nodes

GTM

Coordinator nodes

Data nodes:
 - Stores the actual data
 - Handles requests from the coordinator nodes
 - Returns results to the coordinator nodes

Client machines

Global transaction manager:
 - Issues transaction IDs/snapshots for MVCC

Coordinator nodes:
 - Fetches required data by issuing
 remote queries to the data nodes
 - Manages two-phase commit

9 Copyright©2017 NTT Corp. All Rights Reserved.

• Good

• Provides cutting-edge technologies for sharding

• Not good

• Difficult to maintain stable quality with limited
resources

• Difficult to date with the PostgreSQL source code with
limited resources

• What we believe is

• Built-in sharding for PostgreSQL is the right way to go

Lessons Learned from Postges-XC

10 Copyright©2017 NTT Corp. All Rights Reserved.

• Database Sharding

• Built-in Sharding for PostgreSQL

• Core Features for Built-in Sharding

• Demonstrations

• Concluding Remarks

Outline

11 Copyright©2017 NTT Corp. All Rights Reserved.

• What we have achieved as of PostgreSQL 10

• Declarative table partitioning

• Added in PostgreSQL 10

• Spreads data into partitions across multiple shards

• Don’t need cumbersome setting for that anymore

• Opens the way to many kinds of optimizations

• SQL-based remote database access

• Provided by Foreign Data Wrapper (FDW)

• Pushes database operations down to shards
• Join pushdown in PostgreSQL 9.6

• Aggregation pushdown in PostgreSQL 10

• What we are planning to achieve

• Distributed transaction support

• Smart query planning/execution

Building blocks for built-in sharding

12 Copyright©2017 NTT Corp. All Rights Reserved.

Built-in Sharding for PostgreSQL

• Basic architecture

Partitioned

Table

Remote

Table
Remote

Table
Remote

Table

postgres_fdw

Coordinator

Shard Shard Shard

13 Copyright©2017 NTT Corp. All Rights Reserved.

• Missing pieces

• OLTP: Distributed transaction support

• Extend transaction manager to support atomic
commit/visibility

• OLAP: Smart query planning/execution

• Make planner more partitioning-aware
• Distributed join/aggregation support

• Integrate with logical replication

• Improve executor to achieve parallelism on shards

Towards OLTP/OLAP on built-in sharding

14 Copyright©2017 NTT Corp. All Rights Reserved.

• Atomic commit

• Keeps transaction atomicity across shards

Extend Transaction Manager

Partitioned

Table

Remote

Table

Remote

Table
Remote

Table

2 PC 2 PC 2 PC

Coordinator

Shard Shard Shard

Client

15 Copyright©2017 NTT Corp. All Rights Reserved.

• 1. Partition-wise join

• Reduces cross-shard computation

Make Planner More Partitioning-Aware

Partitioned

Table

Remote

Table

Remote

Table
Remote

Table

Partitioned

Table

Remote

Table

Remote

Table
Remote

Table

SELECT .. FROM P1 JOIN P2

APPEND

JOIN JOIN JOIN

Coordinator

Shard Shard Shard

Client

16 Copyright©2017 NTT Corp. All Rights Reserved.

• 2. Partition-wise aggregation

• Reduces cross-shard computation

Make Planner More Partitioning-Aware

Partitioned

Table

Remote

Table

Remote

Table
Remote

Table

SELECT count(*) FROM P1

APPEND

Partial AGG Partial AGG Partial AGG

Final AGG

Coordinator

Shard Shard Shard

Client

17 Copyright©2017 NTT Corp. All Rights Reserved.

• PostgreSQL 11

• (OLTP) Atomic commit

• (OLAP) Partition-wise join/aggregation

• PostgreSQL 12+

• (OLTP) Atomic visibility

• (OLAP) Parallelism on shards

Our Roadmap

18 Copyright©2017 NTT Corp. All Rights Reserved.

• Database Sharding

• Built-in Sharding for PostgreSQL

• Core Features for Built-in Sharding

• Demonstrations

• Concluding Remarks

Outline

19 Copyright©2017 NTT Corp. All Rights Reserved.

Progress up to PostgreSQL 10

• PostgreSQL 9.3
• Writable foreign tables

< PG 9.3 PG 9.3~

20 Copyright©2017 NTT Corp. All Rights Reserved.

Progress up to PostgreSQL 10

• PostgreSQL 9.3
• WHERE condition pushdown, etc.

< PG 9.3 PG 9.3~

21 Copyright©2017 NTT Corp. All Rights Reserved.

Progress up to PostgreSQL 10

• PostgreSQL 9.5
• Foreign table inheritance as one of the first pieces of

infrastructure to implement built-in sharding

22 Copyright©2017 NTT Corp. All Rights Reserved.

Progress up to PostgreSQL 10

• PostgreSQL 9.6
• Sort pushdown to get data in desired order from the

remote server

< PG 9.6 PG 9.6~

23 Copyright©2017 NTT Corp. All Rights Reserved.

Progress up to PostgreSQL 10

• PostgreSQL 9.6
• Join pushdown to remotely join tables known to be on the

same remote server

< PG 9.6 PG 9.6~

⋈

⋈

24 Copyright©2017 NTT Corp. All Rights Reserved.

Progress up to PostgreSQL 10

• PostgreSQL 10

• Declarative table partitioning where individual partitions
can be foreign tables

25 Copyright©2017 NTT Corp. All Rights Reserved.

Progress up to PostgreSQL 10

• PostgreSQL 10

• Aggregate pushdown to perform grouped or non-grouped
aggregates on the remote server

< PG 10 PG 10~

26 Copyright©2017 NTT Corp. All Rights Reserved.

• Basic features

• Hash partitioning

• Tuple routing for foreign partitions

• Distributed join/aggregation support

• Partition-wise join/aggregation

• Distributed transaction support

• Atomic commit

New in PostgreSQL 11

27 Copyright©2017 NTT Corp. All Rights Reserved.

• Each partition is created by specifying a modulus and a
remainder

• The data is uniformly distributed across all partitions

Hash Partitioning

CREATE TABLE blogs (id int, title text, contents text)
 PARTITION BY hash (id);

CREATE TABLE blogs_1 PARTITION OF blogs
 FOR VALUES WITH (modulus 4, remainder 0);
CREATE TABLE blogs_2 PARTITION OF blogs
 FOR VALUES WITH (modulus 4, remainder 1);
CREATE TABLE blogs_3 PARTITION OF blogs
 FOR VALUES WITH (modulus 4, remainder 2);
CREATE TABLE blogs_4 PARTITION OF blogs
 FOR VALUES WITH (modulus 4, remainder 3);

28 Copyright©2017 NTT Corp. All Rights Reserved.

• A join between partitioned tables to be performed by
joining the matching partitions

• In built-in sharding, joins are executed on each shard
servers

Partition-wise Join/Aggregation

Append

Append

Join

Scan

Scan

Scan

Scan

Scan

Scan

Append

Join

Scan

Scan

Scan

Scan

Scan

Scan

Join

Join

The old way Partition-wise join

29 Copyright©2017 NTT Corp. All Rights Reserved.

• Distributed transaction is either committed/aborted on ALL
remote servers

• In the ongoing patch, we employ two-phase commit protocol to
achieve atomic commit

Atomic Commit

Table

Table Table

‘Travels’, ‘Movies’ ‘Music’, ‘Sports’

UPDATE blogs
SET category = ‘Music’
WHERE category = ‘Movies’ and id = ‘ABC123’

Q. What happen
if one shard
crashes during
commit?

30 Copyright©2017 NTT Corp. All Rights Reserved.

• Database Sharding

• Built-in Sharding for PostgreSQL

• Core Features for Built-in Sharding

• Demonstrations

• Concluding Remarks

Outline

31 Copyright©2017 NTT Corp. All Rights Reserved.

Demo: Schema

• Two tables to store user action data on a travel-related
application

• Column highlighted in green is the partition/shard key

Column Type

id integer

user_id integer

booked_at timestamp without time zone

from_city text

from_continent text

to_city text

to_continent text

Column Type

id integer

user_id integer

booked_at timestamp without time zone

city_name Text

continent text

flight_id integer REFERENCES flight_bookings (id)

Table “flight_bookings”

Table “hotel_bookings”

32 Copyright©2017 NTT Corp. All Rights Reserved.

Demo: Data Layout

flight

bookings
hotel

bookings

flight

bookings
hotel

bookings

flight

bookings
hotel

bookings

flight

bookings
hotel

bookings

flight

bookings
hotel

bookings

Asia,

Oceania

• 4 partitions of each table

• Since both tables are partitioned on the column containing
same set of data in each table, corresponding tables on a
given shard contain matching data in that column

Europe,

Africa
North America

South and Central

America

33 Copyright©2017 NTT Corp. All Rights Reserved.

Demo: Atomic Commit

hotel

bookings

hotel

bookings

hotel

bookings

hotel

bookings

hotel

bookings

Asia,

Oceania

Europe,

Africa
North America

South and Central

America

DELETE
INSERT

1. Enable

system error

simulation

2. BEGIN

3. Move record

4. COMMIT

=# SELECT * FROM hotel_bookings WHERE user_id = 1892;

 id | user_id | city_name | continent | flight_id
------+---------+-----------+-----------+-----------
 7318 | 1892 | Mumbai | Asia | 35730
(1 row)

• Transaction initiated by a user action to change the hotel booking
for a given flight from ‘Mumbai’ to ‘Moscow’.

• Causes the record to move from ‘Asia’ shard to ‘Europe’ shard

• During commit phase, the ‘Asia’ shard fails

• Whole transaction is aborted, so no data change occurs 👌

34 Copyright©2017 NTT Corp. All Rights Reserved.

Demo: OLAP Query

• Query to get per-continent count of flights that have a
hotel booking associated with it

SELECT F.to_continent, count(*)

FROM flight_bookings F, hotel_bookings H

WHERE F.to_continent = H.continent AND

 F.id = H.flight_id AND

 F.booked_at > ‘2017-10-01’

GROUP BY F.to_continent;

35 Copyright©2017 NTT Corp. All Rights Reserved.

• Database Sharding

• Built-in Sharding for PostgreSQL

• Core Features for Built-in Sharding

• Demonstrations

• Concluding Remarks

Outline

36 Copyright©2017 NTT Corp. All Rights Reserved.

• Built-in sharding

• Towards OLTP/OLAP on built-in sharding

• PostgreSQL 11

• (OLTP) Atomic commit

• (OLAP) Partition-wise join/aggregation

• PostgreSQL 12+

• (OLTP) Atomic visibility

• (OLAP) Parallelism on shards

• Remaining work

• Logical replication integration

• Orchestration

• Monitoring

• High availability

Concluding Remarks

37 Copyright©2017 NTT Corp. All Rights Reserved.

• R. Haas: From FDWs to Sharding, PGCon 2015

• S. Riggs: Logical Replication, Sharding & Multimaster
Clusters, PGConf.ASIA 2016

• M. Sawada: Built-in Sharding update and future,
PGConf.Russia 2017

• A. Langote, E. Fujita, K. Horiguchi, and M. Sawada:
Towards Built-in Sharding in Community PostgreSQL,
PGCon 2017

References

38 Copyright©2017 NTT Corp. All Rights Reserved.

• Any questions?

Thank You

