
December 5, 2017

Takayuki Tsunakawa
Fujitsu Limited

Road to a Multi-model Database
-- making PostgreSQL the most

popular and versatile database

Copyright 2017 FUJITSU LIMITED0

PGConf.ASIA 2017

Who am I?

Takayuki Tsunakawa
 PostgreSQL contributor
 PostgreSQL Enterprise Consortium member

(PostgreSQL Ecosystem Wiki maintainer)

Develop/Maintain/Support
FUJITSU Software Enterprise Postgres

(PostgreSQL-based product)
 Support open source PostgreSQL in various products

Copyright 2017 FUJITSU LIMITED1

Agenda
Why is multi-model necessary? (background)
What is multi-model database?
How should we implement it?

Copyright 2017 FUJITSU LIMITED2

Why is multi-model
necessary?

Copyright 2017 FUJITSU LIMITED3

Big Data

Copyright 2017 FUJITSU LIMITED

Variety

VelocityVolume

4

Can PostgreSQL Handle Big Data?

Copyright 2017 FUJITSU LIMITED

Variety

Volume Velocity

Key-value model
hstore type

Document model
jsonb type

Partitioning
PostgreSQL 10~

Scaleout
Postgres-XL Citus

(fork) (extension)

GPU
PG-Strom

(extension)

Streaming
PipelineDB

(fork)

In-memory columnar
In developing

Persistent memory,
FPGA, SIMD

N/A

5

Developer productivity with flexible data model
 Can handle various data types as-is (array, list, object, graph, etc.)
No need to map to relational model (eliminate ORM)

High scalability
 Can store and process voluminous data
 Can handle many requests simultaneously

 Fault tolerance

Why NoSQL Attracts Attention?

Copyright 2017 FUJITSU LIMITED

array list object

graph ・・・
relational modelMapping

is not needed

voluminous dataapplication

6

Data Models

Copyright 2017 FUJITSU LIMITED

Data model Representative DBMSs
Relational Oracle, MySQL, SQL Server, PostgreSQL
Key-value Redis, Memcached
Document MongoDB, CouchBase, MarkLogic
Graph Neo4j
Wide columnar Cassandra, Hbase
RDF MarkLogic, Virtuoso, Oracle
Text search Elasticsearch, Apache Solr
Time series InfluxDB
Multi-dimensional array rasdaman, SciDB
Event Event Store, NEventStore
Object InterSystems Cache

7

Polyglot Persistence
Use multiple DBMSs in one system/application
 Spread by Martin Fowler

Copyright 2017 FUJITSU LIMITED

Graph

Key-value

Document Wide columnar

Data models in online shopping application

RDB
Web session
shopping cart
user profile

customer
order

recommendation
product catalog

Web access log

application

8

Multiple DBMSs Use
 Leading tech companies use many DBMSs (ex. Netflix)

Copyright 2017 FUJITSU LIMITED

Data model DBMSs
Relational MySQL, Redshift

Key-value Memcached, Redis, Hollow (developed by Netflix)

Text search Elasticsearch

Wide columnar Cassandra

Time series Atlas (developed by Netflix)

Event Druid

9

Problems (1/2)
Data silo to prevent cross-sectional data analysis
 Time-consuming and laborious ETL
 Complex logic in application (fetch, join, aggregation, sort)

Data consistency among DBMSs
Distributed transaction is not available in all DBMSs

 Infrastructure cost increase due to duplication of data

Copyright 2017 FUJITSU LIMITED

・・・ ・・・

Key-value Graph

RDB Document

10

Problems (2/2)
Operational complexity
 Product/OSS software management, support/service contracts
 Infrastructure provisioning (server, storage, network)
Deployment, patching, testing, configuration, version control
 Security: user management, access control, encryption, auditing
Monitoring and diagnosis, performance tuning, troubleshooting
HA: backup/recovery, local failover, disaster recovery

 Steep learning curve for developers
DBMS-specific non-SQL API and SQL-like query language
 Transaction control, consistency model, application tuning

 Lack of skilled personnel

Copyright 2017 FUJITSU LIMITED

？ ？

11

What is multi-model
database?

Copyright 2017 FUJITSU LIMITED12

Overview
 Support multiple data models in one DBMS

Copyright 2017 FUJITSU LIMITED

etc・・・

RDB Graph Key-value Document

application

Very smart!

13

Merits

"All-in-one" is convenient,
just like a smartphone

Copyright 2017 FUJITSU LIMITED

Smooth data utilization
with less data integration

Higher developer productivity

Lower cost
for infrastructure and DBA

14

Multi-model Database Examples

Copyright 2017 FUJITSU LIMITED

DBMS Supported data models
ArangoDB key-value, document, graph

Cosmos DB key-value, document, graph

CouchBase key-value, document

DataStax(on Cassandra) key-value, wide column, graph

MarkLogic document, text/binary, RDF

OrientDB key-value, document, graph, text/binary

15

Trends of Major DBMSs
Major RDBMSs are adding data models
NoSQL DBMSs are also adding data models

Copyright 2017 FUJITSU LIMITED

DBMS Key-value Document Wide
column Graph

Oracle ++ +
MySQL ++ +
SQL Server + +
MongoDB + ++ +
PostgreSQL + +

Data model support in top 5 popular DBMSs

16

PostgreSQL as a Multi-model Database
Why based on RDBMS?

Why based on PostgreSQL?

Copyright 2017 FUJITSU LIMITED

 Mature storage engine and transaction management
 Smart optimizer
 Prevalent RDBMS gives more people the chance to use

RDBMS has

 Extensibility as a data platform
 Liberal community open to niche data models

PostgreSQL has

17

How should we implement
multi-model database?

Copyright 2017 FUJITSU LIMITED18

What is Data Model?

Copyright 2017 FUJITSU LIMITED

Data model = Structure + Constraint + Operation
Data model

Structure

table, row, column

key, value

node, relationship,
property, label

Constraint

unique, referential,
check, not null, ...

unique

unique,
node existence

Operation

scan, join,
restriction,

projection, …

get, put

scan, join,
restriction,
projection,

pattern match, …

Relational

Key-value

Graph

19

Query Language and API
 Adopt standard and well-known languages/APIs per

data model
Developer productivity: leverage skill/know-how/asset
 Rich information for learning
 Standard compliance and popularity for ecosystem

 Examples

Copyright 2017 FUJITSU LIMITED

Data model languages/APIs
Key-value Redis API, Memcached API
Document SQL/JSON path (SQL standard), MongoDB API
Graph Cypher, Gremlin
RDF SPARQL (W3C standard)
Array SQL/MDA (Multi-Dimensional Array) (future SQL standard)

20

Multi-model Approach 1
 Flexible Schema Data (FSD)
 Leverage RDBMS’s user defined data type, function, and index
 Store/access data in a table column with functions in SQL
Used for XML, JSON, geospatial data

Copyright 2017 FUJITSU LIMITED

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper5.pdfreference :

Relational Data Flexible Schema
Data (FSD)

RDBMSSQL
SQL

NoSQL API

application

user defined data type,
function, index

21

Multi-model Approach 2
 Independent data model components
Query language and API for each data model
Data is optionally separated from relational data
Use for Graph, RDF, time series, event…

 Independence ensures performance for each data model

Copyright 2017 FUJITSU LIMITED

Parser
Transformer

Planner
Executor

Graph
Parser

RDF

Q
ue

ry
 P

ro
ce

ss
or

Cypher, GremlinSPARQL

Parser
Transformer

Planner
Executor

SQL

Relational

application

Storage engineStorage engine

22

Examples Based on Approach 2
Graph model: AgensGraph (fork)
 https://github.com/bitnine-oss/agensgraph

 Time series model: TimescaleDB (extension)
 https://github.com/timescale/timescaledb

Copyright 2017 FUJITSU LIMITED23

Pluggable Data Model
Want to facilitate data model development
 Introduce 3 pluggable objects
Query language : generate parse tree from query string
Data model : generate query plan from parse tree and run it
 Region : combination of query language and data model

Copyright 2017 FUJITSU LIMITED

Data model as an extension

Query
language

Data model

Relational model

PostgreSQL

Query
language

Data model

Graph model

Query
language

RDF model
24

Multi-model Query
Mix queries for multiple data models in a query string
 Execute query in a specified region

in_region(region_name, query string)
 Convert data across regions

cast_region(source data, dest region name,
dest container, dest schema)

Copyright 2017 FUJITSU LIMITED

-- Among Chinese restaurants in Tokyo,
-- list up to 5 top ones among friends' friends
SELECT r.name, g.num_likers FROM restaurant r,

cast_region(
in_region('graph_cypher',

'MATCH (:Person {name:"Taro"})-[:IS_FRIEND_OF*1..2]-(friend),
(friend)-[:LIKES]->(restaurant:Restaurant)
RETURN restaurant.name, count(*)'),

'relational', 'g', '(name text, num_likers int')
WHERE r.name = g.name AND r.city = 'Tokyo' AND r.cuisine = ‘chinese'
ORDER BY g.num_likers DESC LIMIT 5;

25

Mixed-model Query Execution

Copyright 2017 FUJITSU LIMITED

Multi-model query plan

relation:table/index scan
restaurant

relation:join

relation:sort

graph:pattern match
IS_FRIEND_OF

graph:node scan
Person

26

Document Model
 PostgreSQL supports JSON since 2012, but…
Different SQL/JSON was standardized in SQL:2016
 Store JSON data in character/binary column
 Intuitive function and SQL/JSON path language
 Powerful JSON_TABLE function to map JSON to relational data

 Support for SQL/JSON is being developed in community

Copyright 2017 FUJITSU LIMITED

SELECT
JSON_VALUE(jcol, '$.name') AS name,
JSON_QUERY(jcol, '$.skills') AS skills

FROM emp
WHERE

JSON_EXISTS(jcol, '$.projects[*] ?
(@.category == "IoT")');

SELECT
jcol ->> 'name' AS name,
jcol -> 'skills' AS skills

FROM emp
WHERE

jcol @>
'{ "projects": [{ "category": "IoT" }] }';

Query in current PostgreSQL Query in SQL/JSON

27

Index

Graph Model
 The key is performance in storage engine
 RDB is slow to traverse graph due to index scan
 Eliminate index scan using direct pointers between records
Node traversal cost drops from O(n) to O(1)

Copyright 2017 FUJITSU LIMITED

Friend Friend

FriendFriend

Native graph

Friend

Jill Jack
John Jack
John Jill
Jack Jill
Jack John

Graph in RDBMS

John Jack Jill

John

Jack

28

Key-value Model
 PostgreSQL has hstore data type, but
 Less performant than expected
Unfamiliar API

 Solution: Redis in the background worker
Maximal performance by bypassing SQL processor
 Familiar, developer-friendly Redis API

Copyright 2017 FUJITSU LIMITED

SQL processor storage engine

Redis API (get/put)

application

DiskTable

29

Conclusion

Copyright 2017 FUJITSU LIMITED

Multi-model is necessary for broader use of PostgreSQL

PostgreSQL 10

PostgreSQL 11
 Build pluggable data model infrastructure
 Add/Improve popular data models:

key-value, SQL/JSON, graph

PostgreSQL 12
 Add other (niche?) data models

30

Let’s do it together!
 Search “multi-model“ in pgsql-hackers mailing list

 Any idea/wish comment as a user is welcome
 Contact me if inconvenient (Japanese/English OK)

tsunakawa.takay@jp.fujitsu.com

Copyright 2017 FUJITSU LIMITED31

32

Copyright 2017 FUJITSU LIMITED

Questions?

33

	Road to a Multi-model Database�-- making PostgreSQL the most� popular and versatile database
	Who am I?
	Agenda
	Why is multi-model necessary?
	Big Data
	Can PostgreSQL Handle Big Data?
	Why NoSQL Attracts Attention?
	Data Models
	Polyglot Persistence
	Multiple DBMSs Use
	Problems (1/2)
	Problems (2/2)
	What is multi-model database?
	Overview
	Merits
	Multi-model Database Examples
	Trends of Major DBMSs
	PostgreSQL as a Multi-model Database
	How should we implement multi-model database?
	What is Data Model?
	Query Language and API
	Multi-model Approach 1
	Multi-model Approach 2
	Examples Based on Approach 2
	Pluggable Data Model
	Multi-model Query
	Mixed-model Query Execution
	Document Model
	Graph Model
	Key-value Model
	Conclusion
	Let’s do it together!
	スライド番号 33
	スライド番号 34

